\(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

\(a,\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{6}^2}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{2\sqrt{6}-1}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{2\sqrt{6}^2-1^2}=\frac{4\sqrt{3}+6\sqrt{2}+12+\sqrt{2}+\sqrt{3}+\sqrt{6}}{11}\)\(=\frac{\sqrt{6}+5\sqrt{3}+7\sqrt{2}+12}{11}\)

\(b,\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{z}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{z}^2}\)

\(=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{x+2\sqrt{xy}+y-z}\)

6 tháng 7 2019
https://i.imgur.com/yjikkJN.jpg
10 tháng 8 2015

\(a,\frac{2xy}{2\sqrt{x}+3\sqrt{y}}=\frac{2xy.\left(2\sqrt{x}-3\sqrt{y}\right)}{\left(2\sqrt{x}+3\sqrt{y}\right)\left(2\sqrt{x}-3\sqrt{y}\right)}=\frac{4x\sqrt{x}y-6xy\sqrt{y}}{2x-3y}\)

\(b,\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{x}}{2\sqrt{x}\sqrt{x}}=\frac{x+\sqrt{xy}}{2x}\)

\(c,\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{2.\left(\sqrt{3}-1\right)}{2}=\sqrt{3}-1\)

\(d,\frac{6}{2\sqrt{3}+\sqrt{2}}=\frac{6\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}=\frac{6\left(2\sqrt{3}-\sqrt{2}\right)}{10}=\frac{6\sqrt{3}-3\sqrt{2}}{5}\)

5 tháng 8 2019

a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)

\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)

\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)

\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)

5 tháng 8 2019

bạn làm tương tự nha

19 tháng 10 2020

a) \(\frac{6}{\sqrt{3}}=\frac{6\sqrt{3}}{3}=2\sqrt{3}\)

b) \(\frac{8}{5\sqrt{2}}=\frac{8\cdot5\sqrt{2}}{50}=\frac{40\sqrt{2}}{50}=\frac{4\sqrt{2}}{5}\)

c) \(\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a}\)( a > 0 )

d) \(\frac{\sqrt{3-3}}{\sqrt{3-1}}=0\)

e) \(\frac{1-2\sqrt{a}+a}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}=1-\sqrt{a}\)(\(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))