\(\frac{2xy}{2\sqrt{x}+3\sqrt{y}}\)

b

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

\(a,\frac{2xy}{2\sqrt{x}+3\sqrt{y}}=\frac{2xy.\left(2\sqrt{x}-3\sqrt{y}\right)}{\left(2\sqrt{x}+3\sqrt{y}\right)\left(2\sqrt{x}-3\sqrt{y}\right)}=\frac{4x\sqrt{x}y-6xy\sqrt{y}}{2x-3y}\)

\(b,\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{x}}{2\sqrt{x}\sqrt{x}}=\frac{x+\sqrt{xy}}{2x}\)

\(c,\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{2.\left(\sqrt{3}-1\right)}{2}=\sqrt{3}-1\)

\(d,\frac{6}{2\sqrt{3}+\sqrt{2}}=\frac{6\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}=\frac{6\left(2\sqrt{3}-\sqrt{2}\right)}{10}=\frac{6\sqrt{3}-3\sqrt{2}}{5}\)

6 tháng 7 2019
https://i.imgur.com/yjikkJN.jpg
5 tháng 8 2019

a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)

\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)

\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)

\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)

5 tháng 8 2019

bạn làm tương tự nha

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Bài 1:

a)

\(\frac{\sqrt{2.3}+\sqrt{2.7}}{2\sqrt{3}+2\sqrt{7}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{7})}{2(\sqrt{3}+\sqrt{7})}=\frac{\sqrt{2}}{2}\)

b)

\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Bài 2:

a)

\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}=\sqrt{4}-\sqrt{1}=1\) (đpcm)

b)

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)

\(=\sqrt{\frac{(\sqrt{3}+1)^2}{2}}+\sqrt{\frac{(\sqrt{3}-1)^2}{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\) (đpcm)

c) Sửa đề:

\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}-\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=\left[\frac{a-2\sqrt{a}-(a+2\sqrt{a})}{(\sqrt{a}+2)(\sqrt{a}-2)}+\frac{4\sqrt{a}-1}{a-4}\right].(a-4)\)

\(=\left(\frac{-4\sqrt{a}}{a-4}+\frac{4\sqrt{a}-1}{a-4}\right).(a-4)=-4\sqrt{a}+4\sqrt{a}-1=-1\)

d)

\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{(\sqrt{a}+\sqrt{b})^2-(\sqrt{a}-\sqrt{b})^2}{2(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}+\frac{2b}{a-b}=\frac{4\sqrt{ab}}{2(a-b)}+\frac{2b}{a-b}\)

\(=\frac{2\sqrt{ab}+2b}{a-b}=\frac{2\sqrt{b}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Câu 1

a: \(=\dfrac{\sqrt{2}}{4}\)

b: \(=\sqrt{\dfrac{6}{100}}=\dfrac{\sqrt{6}}{10}\)

d: \(=\dfrac{7}{3\sqrt{3}}=\dfrac{7\sqrt{3}}{9}\)

Câu 2: 

a: \(=\sqrt{\dfrac{1}{\sqrt{3}}}=\sqrt{\dfrac{\sqrt{3}}{3}}\)

b: \(=\sqrt{\dfrac{3\sqrt{3}+9}{6}}\)

c: \(=\dfrac{\sqrt{4}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=2\)

d: \(=\dfrac{5\sqrt{2}}{6}\)