Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do B là giao điểm BE và BM nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+y-2=0\\2x+y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow B\left(1;1\right)\)
Đường thẳng AC vuông góc BE nên nhận (1;-1) là 1 vtpt
Phương trình AC (qua A) có dạng:
\(1\left(x+2\right)-1\left(y-0\right)=0\Leftrightarrow x-y+2=0\)
Do C thuộc AC nên tọa độ có dạng: \(C\left(c;c+2\right)\)
Gọi M là trung điểm AC \(\Rightarrow M\left(\dfrac{c-2}{2};\dfrac{c+2}{2}\right)\)
Do M thuộc BM nên tọa độ thỏa mãn:
\(2\left(\dfrac{c-2}{2}\right)+\dfrac{c+2}{2}-3=0\Rightarrow c=\dfrac{8}{3}\)
\(\Rightarrow C\left(\dfrac{8}{3};\dfrac{14}{3}\right)\)
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Gọi K là điểm đối xứng với H qua phân giác AD (D € BC)
=> K € AC
Vì HK vuông góc với AD =>pt HK có dạng: x + y + m = 0
Mà: H(-1;-1) € HK => -1 - 1 + m = 0 <=> m = 2
Vậy pt HK: x + y + 2 = 0
Gọi HK ∩ AD = I => Tọa độ I là nghiệm hệ:
{ x + y + 2 = 0``````{ x = -2
{ x - y + 2 = 0 <=>{ y = 0 => I(-2;0)
Do K đối xứng với H(-1;-1) qua I(-2;0) => K(-3;1)
*Viết phương trình AC
Vì AC _|_ BH => Phương trình BH có dạng: 3x - 4y + n = 0
Mặt khác: K(-3;1) € AC => 3.(-3) - 4.1 + n = 0 <=> n = 13
Vậy phương trình AC: 3x - 4y + 13 = 0
Ta có: AC ∩ AD = A =>Tọa độ A là nghiệm hệ:
{ 3x - 4y + 13 = 0``````{ x = 5
{ x - y + 2 =0`````` <=>{ y = 7 => A(5;7)
*Viết phương trình CH
Ta có: vt AH = (-6;-8) là vec tơ pháp tuyến của CH và CH đi qua H(-1;-1)
=>pt CH: -6(x+1) - 8(y+1) = 0<=> 3x + 4y + 7 = 0
Ta có: AC ∩ CH = C =>Tọa độ C là nghiệm hệ
{ 3x + 4y + 7 = 0```````{x = -10/3
{ 3x - 4y + 13 = 0 <=>{ y = 3/4 => C(-10/3;3/4)
\(M=\left(m;8m+4\right)\) là trung điểm AC.
\(\Rightarrow A=\left(2m+5;16m+14\right)\)
Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)
\(\Rightarrow m=-1\)
\(\Rightarrow A=\left(3;-2\right)\)
Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:
\(2x-y+4=0\)
B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)
Đáp án C
+Ta có AB và CH vuông góc với nhau nên đường thẳng AB nhận u → ( 1 ; - 1 ) làm VTCP và n → ( 1 ; 1 ) làm VTPT.
Đường thẳng AB nhận (1 ; 1) làm VTPT và đi qua điểm A( 1 ; -2) nên có phương trình là :
1( x-1) + 1( y+ 2) =0 hay x+ y+ 1= 0
+ Mà 2 đường thăng AB và BN cắt nhau tại B nên Toạ độ B là nghiệm hệ phương trình
Vậy tọa độ điểm B( -4 ; 3) .
Đáp án D
Ta có AB và CH vuông góc với nhau nên AB qua A(1; -2) và nhận VTPT ( 1;1). Phương trình AB:
1(x-1) + 1( y+2) = 0 hay x+ y +1 = 0
Có AB và BN cắt nhau tại B nên tọa độ B là nghiệm hệ phương trình
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
Cách làm sơ khảo:
Gọi các giao điểm của 3 đường đã cho. P là giao điểm của phân giác và trung tuyến
Q là giao điểm của trung tuyến và đường cao. R là giao điểm của phân giác và đường cao. Các điểm này đều biết tọa độ rồi.
Xét tam giác ABQ có QR vuông góc AB, AR vuông góc BQ suy ra R là trực tâm Nên có BR vuông góc AQ.
Gọi tọa độ điểm A(a,3-a). B(b, b+1)
Ta có 2 pt để tính a,b là tích vô hướng của BR.AQ=0 và véc tơ AB song song với véc tơ pháp cảu RQ chính là đường cao qua C
Tìm ra a,b.
Tìm ra điểm A,B
Gọi M là trung điểm của AC
Xét tan giác ABM có phân giác AP vuông góc với BM Suy ra P là trung điểm của BM
Tìm được tọa độ M. Từ đó tính ra tọa độ C