Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B
Ta có độ biến dạng của lò xo tại vị trí cân bằng: x = ∆ l = m g k = T 2 g 4 π 2 = 4 c m
Xét chuyển động của con lắc với thang máy: Chọn chiều dương hướng lên. Thang máy chuyển động nhanh dần đều ở vị trí: x = ∆ l .
Khi thang máy chuyển động, vị trí cân bằng bị dịch xuống dưới một đoạn bằng:
Nên li độ lúc sau là: x' = x + y.
Ta có:
Từ đó ta có:
Thay số vào ta được:
![](https://rs.olm.vn/images/avt/0.png?1311)
Độ biến dạng của lò xo tại vị trí cân bằng: $x=\Delta l=\dfrac{mg}{k}=\dfrac{T^2 g}{4\pi ^2} = 4cm.$
Xét chuyển động của con lắc với thang máy: Chọn chiều dương hướng lên. Thang máy chuyển động nhanh dần đều ở vị trí $x=\Delta l.$
Khi thang máy chuyển động, vị trí cân bằng bị dịch xuống dưới một đoạn bằng: $y=\Delta l=\dfrac{m\left(g+a\right)}{k}-\dfrac{mg}{k}.$
Nên li độ lúc sau là: $x+y.$
Ta có: $A^2=x^2+\left(\dfrac{v}{\omega }\right)^2.$
$A^2=\left(x+y\right)^2+\left(\dfrac{v}{\omega }\right)^2.$
Từ đó ta có: $A^2=A^2+y^2+2xy.$
Tính ra: $A=3 \sqrt{5}.$
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D
+ Thang máy đứng yên: A = 50 − 32 2 = 9 ( c m ) Δ l = m g k = 16 ( c m )
+ Khi vật ở vị trí thấp nhất: x = A v à v = 0 .
+ Thang máy đi xuống nhanh dần đều => vật có gia tốc quán tính a hướng lên
⇒ g ' = g − a = 0 , 9 g ⇒ Δ l ' = m g ' k = 14 , 4 ( c m )
Lúc này vật có li độ x ' = A + ( Δ l − Δ l ' ) = 10 , 6 ( c m ) và vận tốc v = 0
Suy ra biên độ mới A ’ = 10 , 6 c m .
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D
Hướng dẫn:
Khi thang máy đứng yên, con lắc dao động điều hòa quanh vị trí cân bằng O, với biên độ A = l max − l min 2 = 48 − 32 2 = 8 cm.
+ Tại vị trí thấp nhất, thang máy chuyển động nhanh dần đều xuống dưới → con lắc chịu thêm tác dụng của lực quán tính hướng lên, làm vị trí cân bằng của vật lệc lên trên một đoạn O O ' = m a k = 0 , 4.0 , 1.10 25 = 1 , 6 cm.
→ Tại vị trí thang máy đi xuống, vật có x′ = 8 + 1,6 = 9,6 cm; v′ = 0.
→ Biên độ dao động mới của con lắc là A = 9,6 cm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi con lắc đơn qua VTCB thì thế năng bằng 0, động năng cực đại = cơ năng.
Thang máy đi lên nhanh dần thì vật vẫn đang ở vị trí thấp nhất nên thế năng = 0, trong khi đó, vận tốc không thay đổi --> Động năng không đổi = cơ năng ban đầu.
Do đó cơ năng lúc sau bằng động năng và bằng cơ năng ban đầu.
Gia tốc trọng trường lúc sau: g' < g nên biên độ giảm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi lò xo bị giữ lại tại điểm chính giữa, nghĩa là chiều dài của lò xo chỉ còn một nửa như vậy độ cứng của lò xo tăng thêm 2 lần
Suy ra tần số góc của dao động mới \(\omega_2=\sqrt{\frac{2k}{m}}\) tăng lên \(\sqrt{2}\) so với tần số dao động cũ.
Khi qua vị trí cân bằng thì vận tốc cực đại được tình theo công thức
\(v_{max}=A\omega\)
Trong bài này vận tốc cực đại không đổi
\(A_2=\frac{A}{\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D
Phương pháp: Sử dụng lí thuyết về bài toán thay đổi VTCB trong dao động điều hòa của CLLX thẳng đứng.
Cách giải:
Khi thang đứng yên, ở vị trí CB lò xo dãn một đoạn: ∆ l = m g k = 16 cm, biên độ dao động A = 8cm
Vật ở vị trí thấp nhất, lò xo dãn một đoạn: 16 + 8 = 24cm
Khi thang máy đi xuống nhanh dần đều với gia tốc a, vị trí CB mới là vị trí lò xo dãn một đoạn:
+ Khi vật đi qua vị trí cân bằng thi biên độ dao động của vật sẽ tăng lên.
Đáp án D