K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

Đáp án A

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

Khi lò xo bị giữ lại tại điểm chính giữa, nghĩa là chiều dài của lò xo chỉ còn một nửa như vậy độ cứng của lò xo tăng thêm 2 lần

Suy ra tần số góc của dao động mới \(\omega_2=\sqrt{\frac{2k}{m}}\) tăng lên \(\sqrt{2}\) so với tần số dao động cũ.

Khi qua vị trí cân bằng thì vận tốc cực đại được tình theo công thức

\(v_{max}=A\omega\)

Trong bài này vận tốc cực đại không đổi

\(A_2=\frac{A}{\sqrt{2}}\)

2 tháng 7 2019

Đáp án C

26 tháng 4 2018

Đáp án D

12 tháng 3 2016

Khi giữ tại điểm đó thì chiều dài của lò xo chỉ còn 3/4 chiều dài ban đầu, do đó độ cứng k sẽ tăng lên bằng 4/3 độ cứng ban đầu.

Tần số dao động sẽ tăng lên \(2\sqrt{3}\) lần

Ở vị trí cân bằng vận tốc của vật cực đại và không đổi khi giữ điểm đó

\(A'=\frac{v}{\omega'}=\frac{A\omega}{\omega'}=\frac{A\sqrt{3}}{2}\)

 

\(\rightarrow B\)

20 tháng 6 2016

Tại thời điểm giữ lò xo thì: \(W_{d}=W_{t}=\dfrac{W}{2}\)

Cố định 1 điểm chính giữa lò xo thì thế năng giảm đi 1 nửa

\(\Rightarrow W_{t'}=\dfrac{W_t}{2}=\dfrac{W}{4};W_{đ}=\dfrac{W}{2}\Rightarrow W'=\dfrac{3W}{4}\)

Có: \(k'=2k\Rightarrow \dfrac{3}{4}.kA^{2}=k'A'^{2}\)

\(\Rightarrow \dfrac{A}{A'}=\dfrac{4}{\sqrt{6}}\)

20 tháng 6 2016

nhưng không có đáp án đúng à