Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Số cách chọn ngẫu nhiên 2 lá phiếu là: C 9 2 = 36 (cách)
Các cặp số có tổng là một số lẻ lớn hơn hoặc bằng 15 là: (9;8); (9;6); (8;7). Xác suất để tổng của hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 15 là: 3 36 = 1 12
Đáp án A
Tổng số phiếu trong hộp là 24. Gọi Ω là không gian mẫu.
* Lấy ngẫu nhiên 4 phiếu trong hộp ta có cách lấy hay
Gọi A là biến cố lấy được các phiếu có đủ cả 3 loại.
Ta có các trường hợp sau:
+) 2 đỏ, 1 vàng và 1 xanh: có cách
+) 1 đỏ, 2 vàng và 1 xanh: có cách
+) 1 đỏ, 1 vàng và 2 xanh: có cách
Do đó,
Vậy, xác suất biến cố A là
Đáp án A
Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2 cách ⇒ n ( Ω ) = C 9 2
Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”
Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ => có C 5 2 cách => n ( X ) = C 5 2 .
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = C 5 2 C 9 2 = 5 18 .
Đáp án D
Có 2 trường hợp sau:
+) 1 thẻ ghi số chẵn, 1 thẻ ghi số lẻ, suy ra có C 4 1 . C 5 1 = 20 cách rút.
+) 2 thẻ ghi số chẵn, suy ra có C 4 2 = 6 cách rút.
Suy ra xác suất bằng 20 + 6 C 9 2 = 13 18 .
Xác suất lấy ra quả cầu không có số 1 hoặc số 5 từ túi đầu tiên: \(\frac{8}{{10}} = \frac{4}{5}\)
Xác suất lấy được quả cầu không có số 1 hoặc số 5 từ túi thứ hai là: \(\frac{8}{{10}} = \frac{4}{5}\)
Vì lấy ngẫu nhiên từ hai túi khác nhau một quả cầu nên hai biến cố quả cầu lấy ra mỗi túi không có số 1 hoặc số 5 là độc lập.
Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là: \(\frac{4}{5}.\frac{4}{5} = \frac{{16}}{{25}}\)
Trước hết ta tính xác suất để rút sao cho được hai thẻ có tổng nhỏ hơn 3. Và chỉ thể tổng bằng 2 với trường hợp hai thẻ đều ghi số 1. Như vậy ta có xác suất là \(\frac{1}{5.5}=\frac{1}{25}\).
Vậy xác suất cần tìm là \(1-\frac{1}{25}=\frac{24}{25}\)
Đáp án C
Số cách rút hai lá phiếu là C 9 2
Gọi p là biến cố hai lá phiếu rút được có tổng lẻ lớn hơn hoặc bằng 15