K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

Kéo dài đường cao AH lần lượt cắt BC và đường tròn ngoại tiếp tam giác ABC tại hai điển E và K, ta dễ dàng chứng minh được E là trung điểm HK

Đường cao \(AH\perp BC\) nên có phương trình \(x-y=0\), E là giao điểm của BC và AH \(\Rightarrow E\left(4;4\right)\) và H là trung điểm \(HK\Rightarrow K\left(3;3\right)\), suy ra bán kính đường tròn ngoại tiếp tam giác ABC là \(R=IK=\sqrt{5}\)

\(\Rightarrow\) phương trình đường tròn là \(\left(x-5\right)^2+\left(y-4\right)^2=5,\left(C\right)\)

Vậy hai điểm B, C là nghiệm của hệ hai phương trình đường thẳng BC và đường tròn (C) \(\Rightarrow B\left(3;5\right);C\left(6;2\right)\) và đỉnh A là nghiệm hệ của đường cao AH và đường tròn (C) \(\Rightarrow A\left(6;6\right)\)

Diện tích tam giác ABC là :

\(S_{ABC}=\frac{1}{2}d\left(A,BC\right).BC=\frac{1}{2}\frac{\left|6+6-8\right|}{\sqrt{2}}.3\sqrt{2}=6\)

28 tháng 3 2018

 

23 tháng 8 2017

19 tháng 5 2018

15 tháng 10 2019

Đáp án A

=>  ∆ ABC vuông tại A

Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC,  I(0;2;0)

Đường thẳng d qua tâm I và vuông góc mặt phẳng (ABC) được xác định  

q u a   I ( 0 ; 2 ; 0 ) V T C P :   u → = 1 2 A B → , A C → = ( 3 ; - 1 ; 5 )

Vậy phương trình của d là    x - 3 3 = y - 1 - 1 = z - 5 5

8 tháng 7 2018

Chọn A

 

Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0; 2; 0)

Đường thẳng d cần tìm đi qua I (0; 2; 0) và nhận vectơ  làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là 

28 tháng 3 2018

Chọn C

22 tháng 9 2018

Chọn A

Ta có:

 AB² = 10, BC² = 24, AC² = 14 => ABC vuông tại A.

Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0;2;0).

Đường thẳng d cần tìm đi qua I (0;2;0) và nhận vectơ  làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là