Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A(1;2) và B(3;8)
\(\overrightarrow{AB}=\left(3-1;8-2\right)=\left(2;6\right)\)
Lời giải:
Tọa độ trung điểm $M$ của $AB$ là:
\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)
a) Vì điểm M có tọa độ (x; y) nên vectơ \(\overrightarrow {OM} \) có tọa độ (x; y).
Và điểm N có tọa độ (x’; y’) nên vectơ \(\overrightarrow {ON} \) có tọa độ (x’; y’).
b) Ta có: \(\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} \) (quy tắc hiệu)
Mà \(\overrightarrow {OM} \) có tọa độ (x; y); \(\overrightarrow {ON} \) có tọa độ (x’; y’).
\( \Rightarrow \overrightarrow {MN} = \left( {x';y'} \right) - \left( {x;y} \right) = \left( {x' - x;y' - y} \right)\)
c) Vì \(\overrightarrow {MN} \) có tọa độ \(\left( {x' - x;y' - y} \right)\) nên \(\left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( {x' - x} \right)}^2} + {{\left( {y' - y} \right)}^2}} \)
Cho điểm M(x;y) bất kì, xác định \({M_1},{M_2}\) lần lượt là hình chiếu vuông góc của M xuống trục hoành và trục tung
Dễ thấy \(\overrightarrow {O{M_1}}= x\overrightarrow i ; \, \overrightarrow {O{M_2}} = y \overrightarrow j \)
Áp dụng quy tắc hình bình hành ta có \(\overrightarrow {OM} = \overrightarrow {O{M_1}} + \overrightarrow {O{M_2}} = x\overrightarrow i + y\overrightarrow j \)
Vậy tọa độ của vectơ \(\overrightarrow {OM} \) là (x;y), trùng với tọa độ điểm M.
Từ giả thiết suy ra u → = 1 2 ; − 5 , v → = k ; − 4 .
Để u → ⊥ v → ⇔ u → . v → = 0 ⇔ 1 2 k + − 5 − 4 = 0 ⇔ k = − 40 .
Chọn C.
Từ giả thiết suy ra u → = 1 2 ; − 5 , v → = k ; − 4 .
Yêu cầu bài toán: u → ⊥ v → ⇔ 1 2 k + − 5 − 4 = 0 ⇔ k = − 40 .
Chọn C.
a) Ta có: \(\overrightarrow {OM} = \left( {2;1} \right),\overrightarrow {MN} = \left( { - 3;2} \right),\overrightarrow {MP} = \left( {2;1} \right)\)
b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP} = - 3.2 + 2.1 = - 4\)
c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
d) Ta có: \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)
e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)
Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)
Lời giải:
$I$ là trung điểm $AB$ nên:
\(\left\{\begin{matrix}
\frac{x_A+x_B}{2}=x_I\\
\frac{y_A+y_B}{2}=y_I\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_B=2x_I-x_A\\
y_B=2y_I-y_A\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_B=2.0-1=-1\\ y_B=2(-2)-0=-4\end{matrix}\right.\)
Vậy $B(-1,-4)$
vecto OM=(1;5)
=>x-0=1 và y-0=5
=>x=1; y=5
=>M(1;5)