K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, AB(-2;6) => 2AB(-4;12) 

    BC(4;-3) => 5BC(20;-15)

\(\overrightarrow{u}\)= \(\left[-4-20,12-\left(-15\right)\right]\) = (-24;27)

2, x=\(\dfrac{x_A+x_B+x_C}{3}=\dfrac{-2+0+4}{3}=\dfrac{2}{3}\)

   yG  \(=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-2+4+1}{3}=1\)

 ⇒ G\(\left(\dfrac{2}{3},1\right)\)

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

17 tháng 7 2018

Gọi I(x, y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:

  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.

18 tháng 10 2017

Gọi I( x; y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + ​ 8 x + 16 = x 2 − 4 x + 4 + ​ 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.

a: \(\left\{{}\begin{matrix}x_G=\dfrac{2+4+2}{3}=\dfrac{8}{3}\\y_G=\dfrac{1+0+3}{3}=\dfrac{4}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_I=\dfrac{2+4}{2}=3\\y_I=\dfrac{1+0}{2}=\dfrac{1}{2}\end{matrix}\right.\)

18 tháng 12 2021

cứu em với ạ

 

18 tháng 12 2021

\(\overrightarrow{AB}=\left(4;0\right)\)

\(\overrightarrow{AC}=\left(3;3\right)\)

\(\cos\widehat{A}=\dfrac{4\cdot3+3\cdot0}{\sqrt{4^2}+\sqrt{3^2+3^2}}=\dfrac{12}{4+3\sqrt{2}}=-24+18\sqrt{2}\)

=>Đề sai rồi bạn

28 tháng 7 2018

Tọa độ trọng tâm G x G ; y G  là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .  

Chọn D.