Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}-\dfrac{3}{4}x+\dfrac{5}{2}=\dfrac{4}{5}x+\dfrac{7}{2}\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}x=1\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=\dfrac{-3}{4}\cdot\dfrac{5}{7}+\dfrac{5}{2}=\dfrac{55}{28}\end{matrix}\right.\)
Hoành độ giao điểm là nghiệm của phương trình:
x^2 = 2x - n + 3
<=> x^2 - 2x + n - 3 = 0 (1)
có: \(\Delta'=1^2-\left(n-3\right)=4-n\)
(P) cắt (d) <=> (1) có nghiệm <=> \(\Delta'\ge0\Leftrightarrow n\le4\)(@)
Áp dụng định lí viet ta có: x1 . x2 = n - 2 (2) ; x1 + x2 = 2(3)
Theo bài ra ta có: \(x_1^2-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+n-3=16\)
<=> \(x_1-x_2=8\)(4)
Từ (3); (4) => x1 = 5; x2 = -3
Thế vào (2) ta có: 5.(-3) = n - 3 <=> n = -12
Cho hình vẽ
A B C D I F
Tam giác BEC cân và có \(\widehat{BEC}=150^o\) \(\Rightarrow\) tam giác BEC cân tại E
Gọi H là hình chiếu của E lên AD \(\Rightarrow\) H là trung điểm AD và HE \(=\) d E; AD \(=\) 3
Đặt cạnh hình vuông là \(AB=x\)
Tam giác BEC cân tại E có \(\widehat{BEC}=150^o\Rightarrow\widehat{BEC}=15^o\) . Gọi I là trung điểm của \(BC\Rightarrow BI=\frac{x}{2};EI=x-3\)
Tam giác BIE vuông tại I có góc \(\widehat{EBI}=15^o\Rightarrow tan15^o=\frac{EI}{BI}=\frac{2x-6}{x}\)
\(\Rightarrow2-\sqrt{3}=\frac{2x-6}{x}\Leftrightarrow x=2\sqrt{3}\)
Phương trình đường thẳng EH qua điểm E và vuông góc với \(AD\Rightarrow EH\div4x+3y+4=0\)
Đường thằng \(AB\\ EH\Rightarrow AB\) có dạng \(''d''\div4x+3y+a=0\)
Ta có d \(''E,AB''=\frac{⊥a-4⊥}{5}=BI=\sqrt{3}\Leftrightarrow a=4⊥5\sqrt{3}\)
Phương trình đường thẳng AB là \(''d''\div4x+3y+4⊥5\sqrt{3}=0\)
P/s; Bộ khó lắm à .
Dăm ba cái bài này . Ui người ta nói nó dễ !!!
a ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)
b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0
=> điểm A( 2 ; 0 )
Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m
<=> 0 = 2m - 2 +m
<=> 0 + 2 = 2m + m
<=> 2 = 3m
<=> m = 2/3
c )
Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 )
Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)
=> \(B\left(0;\sqrt{2}\right)\)
Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)
\(\Rightarrow m=\sqrt{2}\)
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [A, A'] Đoạn thẳng l: Đoạn thẳng [B, B'] Đoạn thẳng m: Đoạn thẳng [A', B'] Đoạn thẳng n: Đoạn thẳng [M, B] Đoạn thẳng p: Đoạn thẳng [A, N] Đoạn thẳng s: Đoạn thẳng [A, K'] Đoạn thẳng t: Đoạn thẳng [B, K'] Đoạn thẳng a: Đoạn thẳng [O, J] Đoạn thẳng b: Đoạn thẳng [N, O] Đoạn thẳng d: Đoạn thẳng [M, O] Đoạn thẳng e: Đoạn thẳng [K', I] Đoạn thẳng g_1: Đoạn thẳng [H, I] O = (1.44, 3.08) O = (1.44, 3.08) O = (1.44, 3.08) B = (4.86, 3.08) B = (4.86, 3.08) B = (4.86, 3.08) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm N: Điểm trên c Điểm N: Điểm trên c Điểm N: Điểm trên c Điểm M: Điểm trên c Điểm M: Điểm trên c Điểm M: Điểm trên c Điểm A': Giao điểm đường của h, i Điểm A': Giao điểm đường của h, i Điểm A': Giao điểm đường của h, i Điểm B': Giao điểm đường của h, j Điểm B': Giao điểm đường của h, j Điểm B': Giao điểm đường của h, j Điểm I: Giao điểm đường của n, p Điểm I: Giao điểm đường của n, p Điểm I: Giao điểm đường của n, p Điểm J: Trung điểm của M, N Điểm J: Trung điểm của M, N Điểm J: Trung điểm của M, N Điểm K': Giao điểm đường của q, r Điểm K': Giao điểm đường của q, r Điểm K': Giao điểm đường của q, r Điểm H: Giao điểm đường của f_1, g Điểm H: Giao điểm đường của f_1, g Điểm H: Giao điểm đường của f_1, g
a) Gọi J là trung điểm A'B'. Ta thấy ngay OJ là đường trung bình hình thang AA'B'B.
Từ đó suy ra \(OJ=\frac{AA'+BB'}{2}=\frac{R\sqrt{3}}{2}\)
Lại do OJ // AA' // BB' nên \(OJ⊥A'B'\).
Xét tam giác vuông MOI, có \(MO=R;OJ=\frac{R\sqrt{3}}{2}\Rightarrow MJ=\sqrt{R^2-\frac{3R}{4}}=\frac{R}{2}\) (Định lý Pitago)
Tương tự \(JN=\frac{R}{2}\Rightarrow MN=R.\)
b) Dễ thấy \(\widehat{IMK}=\widehat{INK}=90^o\Rightarrow\) tứ giác MINK nội tiếp đường tròn đường kính IK.
Xét tam giác MON có MO = ON = MN = R nên tam giác đó đều, vậy \(\widehat{MON}=60^o\Rightarrow\widehat{MBN}=30^o\)
(Góc nội tiếp và góc ở tâm cùng chắn một cung)
Do MINK và AMNB nội tiếp nên \(\widehat{MKI}=\widehat{MNI}=\widehat{MBA}\)
Vậy \(\Delta MIK\sim\Delta MAB\left(g-g\right)\Rightarrow\frac{IK}{AB}=\frac{MK}{MB}=tan\widehat{MBK}=tan30^o=\frac{\sqrt{3}}{3}\)
Suy ra \(IK=\frac{\sqrt{3}}{3}.2R=\frac{2R\sqrt{3}}{3}\)
Vậy thì bán kính đường tròn nội tiếp MINK là \(\frac{R\sqrt{3}}{3}.\)
c) Gọi H là chân đường vuông góc hạ từ K xuống AB. Ta thấy ngay KH là đường cao tam giác AKB.
Diện tích tam giác AKB lớn nhất khi KH lớn nhất hay IH lớn nhất.
IH lớn nhất khi tam giác KAB cân tại K. Lại có \(\widehat{AKB}=60^o\) nên KAB là tam giác đều. Khi đó MN là đường trung bình tam giác KAB nên có tính chất là song song và bằng một nửa AB.
\(S_{KAB}=\frac{1}{2}.AB.OK=\frac{1}{2}.2R.R\sqrt{3}=\sqrt{3}R^2\)
neu mnik bang mn thi chung ta se phai lay aq1p +aqwp roi nhan ra lay ket qua chia cho S tim dc la ok
a ) thay \(x=\sqrt{3}-2\) vào hàm số ,
ta được : \(y=\left(\sqrt{3}-2\right).\left(\sqrt{3}-2\right)+1\)
\(y=3-2\sqrt{3}-2\sqrt{3}+4+1\)
\(y=8-4\sqrt{3}\)
b ) Để đường thẳng y = 2x - 1 cắt đường thẳng y = 3x + m thì :
\(\hept{\begin{cases}a\ne a'\\b=b'\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ne3\\-1=m\end{cases}}\)
Vậy khi m = -1 thì hai đường thẳng trên cắt nhau tại một điểm trên trục tung