\(-\dfrac{x^2}{2}\)và đường thẳng (d): y=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

7 tháng 2 2022

xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé 

\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)

\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)

\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)

Ta có : a - b + c = 1 + 6 - 7 = 0 

vậy pt có nghiệm x = -1 ; x = 7 

7 tháng 2 2022

a) vì A(-1; 3) thuộc (d) nên:

3 = 2.(-1) - a + 1

<=> 3 = -2 - a + 1

<=> a = 4

b) Lập phương trình hoành độ giao điểm: 

\(2x-a+1=\frac{1}{2}x^2\)

\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)

ta có: \(y_1=\frac{1}{2}x_1^2\)

         \(y_2=\frac{1}{2}x_2^2\)

\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)

\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)

\(\Leftrightarrow10a-a^2+87=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)

22 tháng 5 2017
  1. a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6   <=>-m-2-m+6=3  <=>-2m=-1  <=>m=1/2.
13 tháng 5 2018

a.

pthdgd

x^2-mx-2=0

∆=m^2+2>o moi m

c/a=-2<0

=>x1<0<x2 moi m => dpcm

17 tháng 12 2022

a: Thay x=0 và y=5 vào y=mx+5, ta đc:

5=m*0+5(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-5=0

Vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

x1<x2 mà |x1|>|x2| nên x1<x2<0

Để (P) cắt (d) tại hai điểm phân biệt âm thì

m/1<0 và -5/1<0

=>m<0

1) Thay x=0;y=1 vào (d)=>m=2

Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)

\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)

\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)

Áp dụng hệ thức Vi-ét:

\(x_1+x_2=1;x_1x_2=-m+1\)

\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)

\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)

Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)

Vậy...

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

30 tháng 3 2019

Phương trình hoành độ giao điểm của (P) và (d) là :

\(x^2=2\left(m+3\right)x-m^2-3.\)

\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)

\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)

Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x; x2 thì phương trình (1) có hai nghiệm phân biệt xx2.

\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)

Theo vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)

Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.

\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)

\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)

\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)

\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)

Vậy \(m=5\).