K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

ĐK \(x_2\ge0;\)

Phương trình hoành độ giao điểm 

x2 = mx + m + 1

\(\Leftrightarrow x^2-mx-m-1=0\)

Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)

\(\Rightarrow\)Phương trình có nghiệm với mọi m

Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)

Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)

khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1

\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình 

Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm) 

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

1: Thay x=-1 và y=1 vào (d), ta được:

-2(a+1)+15-2a=1

=>-2a+2+15-2a=1

=>-4a+17=1

=>-4a=-16

hay a=4

2: Phươg trình hoành độ giao điểm là:

\(x^2-\left(2a+2\right)x-15+2a=0\)

\(\text{Δ}=\left(2a+2\right)^2-4\left(2a-15\right)\)

\(=4a^2+8a+4-8a+60\)

\(=4a^2+64>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

2: Theo đề, ta có: \(x_1+x_2+x_1^2+x_2^2=2a+27\)

\(\Leftrightarrow\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2=2a+27\)

\(\Leftrightarrow2a+27=\left(2a+2\right)+\left(2a+2\right)^2-2\left(2a-15\right)\)

\(\Leftrightarrow4a^2+8a+4+2a+2-4a+30=2a+27\)

\(\Leftrightarrow4a^2+6a+36-2a-27=0\)

\(\Leftrightarrow4a^2+4a+9=0\)

hay \(a\in\varnothing\)

NM
21 tháng 3 2022

ý 1 để bạn tự vẽ nhé

2. Xét phương trình hoành độ giao điểm : 

\(x^2=5x+6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\) tương ứng hai nghiệm trên ta có tọa độ của hai giao điểm là ( -1,1) và (6,36)

3. d' song song với d nên suy ra d' có dạng : \(y=5x+m\text{ với }m\ne6\)

phương trình hoành độ giao điểm khi đó là : \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\text{ có hai nghiệm x1 x2 thỏa mãn }x_1.x_2=24\)

mà theo viet ta có : \(x_1.x_2=\frac{c}{a}=-m\Rightarrow m=-24\)

Thay lại phương trình ta có : \(x^2-5x+24=0\text{ vô nghiệm, do đó không tồn tại d' thỏa mãn đề bài}\)

22 tháng 3 2022

HD: (d'): y= ax+b (a≠0).

- (d') // (d) nên \(\left\{{}\begin{matrix}a=5\\b\ne6\end{matrix}\right.\)⇒ (d'):  y=5x+b

- Xét Pt hoành độ giao điểm của (P) với (d'):

x2=5x+b ⇔x2-5x-b =0 (1).

*) điện kiện có 2 nghiệm

*) theo viet P=-b=24 => b=-24