K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
21 tháng 3 2022

ý 1 để bạn tự vẽ nhé

2. Xét phương trình hoành độ giao điểm : 

\(x^2=5x+6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\) tương ứng hai nghiệm trên ta có tọa độ của hai giao điểm là ( -1,1) và (6,36)

3. d' song song với d nên suy ra d' có dạng : \(y=5x+m\text{ với }m\ne6\)

phương trình hoành độ giao điểm khi đó là : \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\text{ có hai nghiệm x1 x2 thỏa mãn }x_1.x_2=24\)

mà theo viet ta có : \(x_1.x_2=\frac{c}{a}=-m\Rightarrow m=-24\)

Thay lại phương trình ta có : \(x^2-5x+24=0\text{ vô nghiệm, do đó không tồn tại d' thỏa mãn đề bài}\)

22 tháng 3 2022

HD: (d'): y= ax+b (a≠0).

- (d') // (d) nên \(\left\{{}\begin{matrix}a=5\\b\ne6\end{matrix}\right.\)⇒ (d'):  y=5x+b

- Xét Pt hoành độ giao điểm của (P) với (d'):

x2=5x+b ⇔x2-5x-b =0 (1).

*) điện kiện có 2 nghiệm

*) theo viet P=-b=24 => b=-24

 

 

 

19 tháng 2 2021

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

NV
2 tháng 4 2021

b. Phương trình hoành độ giao điểm:

\(x^2=4x-m\Leftrightarrow x^2-4x+m=0\) (1)

d cắt (P) tại 2 điểm phân biệt khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Khi đó kết hợp hệ thức Viet và điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=4\\2x_1+x_2=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-9\\x_2=13\end{matrix}\right.\)

Mà \(x_1x_2=m\)

\(\Rightarrow m=-9.13=-117\)

a) Thay m=6 vào (d), ta được: y=4x-6

Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=4x-6\)

\(\Leftrightarrow2x^2-4x+6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot6=16-48=-32\)(loại)

Vì Δ<0 nên phương trình vô nghiệm

Vậy: Khi m=6 thì (P) và (d) không có điểm chung

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=2\left(m-1\right)x+5-2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

Ta có: \(x_1+x_2=6\)

\(\Leftrightarrow2\left(m-1\right)=6\)

\(\Leftrightarrow m-1=3\)

hay m=4

Vậy: m=4

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-4=0\)

\(\Leftrightarrow3x^2-2mx-8=0\)

ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)

hay m=6 hoặc m=-6

11 tháng 5 2022

giúp mình cả câu a được k bạn ._.

9 tháng 11 2017

Đáp án C