K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Gọi (MN): y=ax+b

Thay x=1 và y=1 vào hàm số y=ax+b, ta được: 

a+b=1

hay a=1-b

Thay x=2 và y=-2 vào hàm số y=ax+b, ta được: 

\(2a+b=-2\)

\(\Leftrightarrow2\left(1-b\right)+b=-2\)

\(\Leftrightarrow2-2b+b+2=0\)

\(\Leftrightarrow4-b=0\)

hay b=4

Thay b=4 vào biểu thức a=1-b, ta được: 

a=1-4=-3

Vậy: (MN): y=-3x+4

Thay x=-1 và y=7 vào hàm số y=-3x+4, ta được:

\(-3\cdot\left(-1\right)+4=7\)

\(\Leftrightarrow3+4=7\)(đúng)

Vậy: M,N,P thẳng hàng(đpcm)

17 tháng 2 2021

gọi pttq có dạng y=ax+b

đt đi qua A => 7=a+b (1)

đt đi qua B => 1=-a+b (2) 

(1),(2) => a=3;b=4 

=> đt đi qua A và B: (d):y=3x+4

Thay C vào đt (d) tm => 3 điểm A,B,C thẳng hàng => dpcm

 

 

17 tháng 2 2021

á ghê, nay chăm thế :)))

 

a: loading...

b: (d1)//(d')

=>(d1): y=-2x+b

Thay x=0 và y=5 vào (d1), ta được:

b-2*0=5

=>b=5

c: Tọa độ giao điểm là;

x=-2x+3 và y=x

=>3x=3 và y=x

=>x=1 và y=1(ĐPCM)

a: loading...

b: Phương trình OA có dạng là y=ax+b

Theo đề, ta có hệ:

0a+b=0 và a+b=1

=>b=0 và a=1

=>y=x

Vì (d)//OA nên (d): y=x+b

Thay x=2 và y=0 vào (d), ta được:

b+2=0

=>b=-2

=>y=x-2

PTHĐGĐ là:

-x^2-x+2=0

vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

gọi Pt đường thảng .....y=ax+b(d)

d đi qua M(-1,1)   1=-a+b⇔b=a+1

gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)

d cắt Oy tại \(B\left(O,b\right)\)

\(\Delta AOB\) vuông cân tại o

\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)

\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)

(do d cắt 2 trục tọa độ nên a,b≠0)

vậy PtT đg thảng d:y=x+2

NV
18 tháng 8 2021

Gọi pt đường thẳng có dạng \(y=ax+b\)

Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)

\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)

Thay tọa độ M vào phương trình ta được:

\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)

NV
13 tháng 12 2020

a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)

Do đường thẳng AB qua A và B nên ta có:

\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)

b. Thay tọa độ C vào pt AB:

\(-1=2.0-1\) (thỏa mãn)

\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng

13 tháng 12 2020

undefined