Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng nhận thấy AC là đường kính của đường tròn và AC vuông góc d1; AB vuông góc d2
Gọi tọa độ A có dạng \(A\left(a;-a\sqrt{3}\right)\) với \(a>0\)
Gọi d là đường thẳng qua A vuông góc d2 \(\Rightarrow\) d nhận \(\left(1;\sqrt{3}\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-a\right)+\sqrt{3}\left(y+a\sqrt{3}\right)=0\Leftrightarrow x+\sqrt{3}y+2a=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+\sqrt{3}y+2a=0\\\sqrt{3}x-y=0\end{matrix}\right.\) \(\Rightarrow B\left(-\frac{a}{2};-\frac{a\sqrt{3}}{2}\right)\)
\(\Rightarrow\overrightarrow{BA}=\left(\frac{3a}{2};-\frac{a\sqrt{3}}{2}\right)\Rightarrow AB=a\sqrt{3}\)
Gọi d' là đường thẳng qua A và vuông góc d1 \(\Rightarrow\) d' nhận \(\left(1;-\sqrt{3}\right)\) là 1 vtpt
Phương trình d':
\(1\left(x-a\right)-\sqrt{3}\left(y+a\sqrt{3}\right)=0\Leftrightarrow x-\sqrt{3}y-4a=0\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x-\sqrt{3}y-4a=0\\\sqrt{3}x-y=0\end{matrix}\right.\) \(\Rightarrow C\left(-2a;-2a\sqrt{3}\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(\frac{3a}{2};\frac{3a\sqrt{3}}{2}\right)\) \(\Rightarrow BC=3a\)
\(S_{ABC}=\frac{1}{2}AB.BC=\frac{\sqrt{3}}{2}\Leftrightarrow\frac{1}{2}.a\sqrt{3}.3a=\frac{\sqrt{3}}{2}\) \(\Rightarrow a=\frac{\sqrt{3}}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(\frac{\sqrt{3}}{3};-1\right)\\C\left(-\frac{2\sqrt{3}}{3};-2\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}I\left(-\frac{\sqrt{3}}{6};-\frac{3}{2}\right)\\R=\frac{AC}{2}=1\end{matrix}\right.\)
Phương trình đường tròn: \(\left(x+\frac{\sqrt{3}}{6}\right)^2+\left(y+\frac{3}{2}\right)^2=1\)
Câu 1:
\(a^2+b^2=1\Rightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\Rightarrow a+b\le\sqrt{2}\)
\(P=c^2-2ac+a^2+d^2-2bd+b^2-\left(a^2+b^2\right)\)
\(P=\left(c-a\right)^2+\left(d-b\right)^2-1\ge\frac{1}{2}\left(c-a+d-b\right)^2-1\)
\(P\ge\frac{1}{2}\left(6-\sqrt{2}\right)^2-1=18-6\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b=\frac{1}{\sqrt{2}}\\c=d=3\end{matrix}\right.\)
Câu 2:
Gọi \(B\in d_1\Rightarrow B\left(a;2-a\right)\Rightarrow\overrightarrow{AB}=\left(a-2;-a\right)\)
\(C\in d_2\Rightarrow C\left(c;8-c\right)\Rightarrow\overrightarrow{AC}=\left(c-2;6-c\right)\)
Để tam giác ABC vuông cân tại A thì:
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{AC}=0\\AB^2=AC^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(c-2\right)-a\left(6-c\right)=0\\\left(a-2\right)^2+a^2=\left(c-2\right)^2+\left(6-c\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ac-4a-c+2=0\\a^2-2a=c^2-8c+18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-4\right)=2\\\left(a-1\right)^2=\left(c-4\right)^2+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=3;c=5\\a=-1;c=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(3;-1\right);C\left(5;3\right)\\B\left(-1;3\right);C\left(3;5\right)\end{matrix}\right.\)
\(d1:x+y-2=0\Leftrightarrow y=-x+2\Rightarrow B\left(a;-b+2\right)\)
\(d2:x+y-8=0\Leftrightarrow y=-x+8\Rightarrow C\left(b;-b+8\right)\)
\(\Rightarrow AB=\sqrt{\left(a-2\right)^2+\left(-a+2-2\right)^2}\)
\(\Rightarrow AC=\sqrt{\left(b-2\right)^2+\left(-b+8-2\right)^2}\)
\(\Delta ABC\) \(vuông\) \(cân\) \(tạiA\Rightarrow\left\{{}\begin{matrix}AB^2=AC^2\\\overrightarrow{AB}.\overrightarrow{AC}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(-a\right)^2=\left(b-2\right)^2+\left(-b+8-2\right)^2\\\left(a-2\right)\left(b-2\right)+\left(-a\right)\left(-b+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}B\left(-1;3\right)\\C\left(3;5\right)\end{matrix}\right.\\\left\{{}\begin{matrix}B\left(3;-1\right)\\C\left(5;3\right)\end{matrix}\right.\end{matrix}\right.\)
Tam giác ABC vuông cân tại đâu nhỉ? Tại A? Tại B? Tại C?
Nếu đề ko nêu rõ yêu cầu thì phải giải 3 trường hợp, rất mệt
aetusrkyi