K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Đáp án A

Tam giác ABC có trọng tâm thuộc đường thẳng AM khi và chỉ khi trung điểm I của BC nằm trên đường thẳng AM.

18 tháng 2 2017

Sử dụng phương trình theo đoạn chắn của

mặt phẳng và áp dụng BĐT Bunhiacopski.

Chọn A.

25 tháng 4 2018

Đáp án D

Vì A thuộc Ox nên A(a;0;0).

Vì B thuộc Oy nên B(0;b;0).

Vì C thuộc Oz nên C(0;0;c).

G là trọng tâm tam giác ABC khi và chỉ khi

28 tháng 1 2018

6 tháng 5 2017

Chọn A.

Phương pháp: Sử dụng phương trình mặt phẳng theo đoạn chắn.

28 tháng 1 2018

Đáp án A.

Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M  

Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P  (P) nhận O M ¯ = 3 ; 2 ; 1  là vecto pháp tuyến.

Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯  và không chứa điểm M thì thỏa.

14 tháng 5 2017

Đáp án C.

Đặt A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c .

Mà M là trọng tâm tam giác ABC  ⇒ a 3 = 1 b 3 = 2 c 3 = 3 ⇔ a = 3 ; b = 6 ; c = 9 .

Phương trình mặt phẳng P : x 3 + y 6 + z 9 = 1 ⇔ 6 x + 3 y + 2 z − 18 = 0 .

3 tháng 9 2018

Đáp án C.

Đặt A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c .

Mà M là trọng tâm tam giác ABC ⇒ a 3 = 1 b 3 = 2 c 3 = 3 ⇔ a = 3 ; b = 6 ; c = 9 .

Phương trình mặt phẳng P : x 3 + y 6 + z 9 = 1 ⇔ 6 x + 3 y + 2 z - 18 = 0 .

17 tháng 2 2017

Đáp án B

Vì OA, OB, OC đôi một vuông góc và M là trực tâm Δ A B C ⇒ O M ⊥ A B C  

Suy ra mp A B C  nhận O M →  làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)

Vậy phương trình m p P : 1. x − 1 + 2. y − 2 + 3. z − 3 = 0 ⇔ x + 2 y + 3 z − 14 = 0