Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀
Ta có
Khi đó 3 I A ⇀ = 2 I B ⇀
Ta có:
(vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )
Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)
Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) là
Suy ra M = d ∩ ( P ) nên tọa độ điểm M là nghiệm của hệ
Từ đó
⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3
Chọn đáp án B.
Kiểm tra thấy A và B nằm khác phía so với mặt phẳng (P)
Ta tìm được điểm đối xứng với B qua (P) là B ' ( -1;-3;4 )
Lại có M A - M B = M A - M B ' ≤ A B ' = c o n s t .
Vậy M A - M B đạt giá trị lớn nhất khi M, A, B’ thẳng hàng hay M là giao điểm của đường thẳng AB’ với mặt phẳng (P).
Đường thẳng AB’ có phương trình tham số là x = 1 + t y = - 3 z = - 2 y .
Tọa độ điểm M ứng với tham số t là nghiệm của phương trình
1 + t + - 3 + - 2 t - 1 = 0 ⇔ t = - 3 ⇒ M - 2 ; - 3 ; 6
Suy ra a = -2; b = -3; c = 6
Vậy a + b + c = 1
Đáp án A
Chọn B
Đặt M(x;y;z). Lập hệ 3 phương trình ba ẩn x,y,z từ phương trình mặt phẳng (P) và điều kiện MA=MB, MA=MC
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Đáp án B