Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi phương trình đường thẳng ∆ là
Vì ∆ nằm trong mặt phẳng (P)
Góc giữa hai đường thẳng ∆ và Oz là
Ta có
Khi cos α lớn nhất ⇒ α nhỏ nhất và bằng a r cos 6 3 . Xảy ra khi b = 2 c = 2 a
Do đó, phương trình đường thẳng ∆ là
Chọn A
Gọi I (a;b;c)
Ta có IA=IO=R ó hình chiếu của I lên OA là trung điểm của OA.
Theo bài ra ta có:
Chọn A
Điểm M(1;0;0) là 1 điểm thuộc (P)
Vì (P) // (Q) nên
Giả sử I(a;b;c) là tâm của (S). Vì (S) tiếp xúc với cả (P) và (Q) nên bán kính mặt cầu (S) là:
Do đó IA = 2 nên I luôn thuộc mặt cầu (T) tâm A, bán kính 2.
Ngoài ra
Do đó I luôn thuộc mặt phẳng (R): 2x-y-2z+4=0.
Gọi H là hình chiếu vuông góc của A lên (R). Vì A, (R) cố định nên H cố định.
Ta có
do đó tam giác AHI vuông tại H nên
Vậy I luôn thuộc đường tròn tâm H, nằm trên mặt phẳng (R), bán kính
Chọn A
Gọi là một vec tơ pháp tuyến của mặt phẳng (P).
Theo đề bài ta có mặt phẳng (P) vuông góc với mặt phẳng (α): x-y+z-4=0 nên ta có phương trình a-b+c=0 ó b=a+c
Phương trình mặt phẳng (P) đi qua A(0;1;2) và có véc tơ pháp tuyến là ax+ (a+c) (y-1)+c (z-2) =0
Khoảng cách từ tâm I (3;1;2) đến mặt phẳng (P) là
Gọi r là bán kính của đường tròn giao tuyến giữa mặt cầu (S) và mặt phẳng (P) ta có r²=16-h² ; r nhỏ nhất khi h lớn nhất.
Dấu “=” xảy ra khi a = -2c. => một véc tơ pháp tuyến là => phương trình mặt phẳng (P) là 2x+y-z+1=0.
Vậy tọa độ giao điểm M của (P) và trục x'Ox là:
Mặt cầu (S) có tâm I(2;-1;2), mặt phẳng (P) có VTPT\(\overrightarrow{n}\)=(1;-1;2). Gọi điểm C(x;y;z) ta có C∈ (S) nên \(\left(x-2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=4\left(1\right)\)
Do CD là đường kính của mặt cầu (S) nên I là trung điểm của CD
=> D(4-x; -y -2; 4-z)
Mà theo đề có CD//(P) nên
\(\overrightarrow{IC}\perp\overrightarrow{n}\Leftrightarrow\overrightarrow{IC}.\overrightarrow{n}=0\) <=> \(x-2-\left(y+1\right)+2\left(z-2\right)=0\left(2\right)\)
Ta có: \(\overrightarrow{AB}=\left(1;-1;-1\right);\overrightarrow{AC}=\left(x;y-1;z-1\right);\overrightarrow{AD}=\left(4-x;y-3;3-z\right)\)
\(\left|\overrightarrow{AC;}\overrightarrow{AD}\right|=\left(2y+4z-6;-2x+4z-4;-4x-y+4\right)\)
\(\overrightarrow{AB}\left|\overrightarrow{AC};\overrightarrow{AD}\right|=2x+4z-6+\left(-1\right)\left(-2x+4z-4\right)+\left(-1\right)\left(-4x-4y+4\right)=6x+6y-6\)
Thể tích khối tứ diện ABCD là:
V = \(\dfrac{1}{6}\left|\overrightarrow{AB}\left[\overrightarrow{AC};\overrightarrow{AD}\right]\right|=\left|x+y-1\right|\)
Đặt : \(\left\{{}\begin{matrix}x-2=a\\y+1=b\\z-2=c\end{matrix}\right.\)
Từ (1) và (2) có hệ : \(\left\{{}\begin{matrix}a^2+b^2+c^2=4\\a-b+2c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=-2c\\ab=\dfrac{4-5c^2}{2}\end{matrix}\right.\)
V=|x+y-1| = |x-2+y +1| = |a+b| = \(\sqrt{\left(a-b\right)^2+4ab}\) = \(\sqrt{4c^2+2\left(4-5c^2\right)}=\sqrt{8-6c^2}\le2\sqrt{2}\)
Vậy GTLN của V là 2\(\sqrt{2}\) khi
\(\left\{{}\begin{matrix}z-2=0\\x-2=0\\\left(x-2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2+\sqrt{2};y=-1+\sqrt{2};z=2\\x=2-\sqrt{2};y=-1-\sqrt{2};z=2\end{matrix}\right.\)