Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Thay tọa độ hai điểm A (3;1;0), B (-9;4;9) vào vế trái phương trình mặt phẳng (P), ta có
2. 3-1+0+1=6 > 0 và 2. (-9)-4+9+1 = -12 < 0.
Nên suy ra, hai điểm A, B nằm khác phía với mặt phẳng (P).
Gọi A' (-1;3;-2) là điểm đối xứng với điểm A qua mặt phẳng (P). Ta có
Dấu “=” xảy ra khi và chỉ khi A', B, I thẳng hàng và I nằm ngoài đoạn A'B. Suy ra I là giao điểm của đường thẳng A'B và mặt phẳng (P).
Ta có , nên suy ra phương trình đường thẳng A'B là .
Tọa độ điểm I là nghiệm của hệ phương trình
Vậy I (7;2;13) nên a+b+c=7+2+ (-13)=-4.
Đáp án A
Gọi I là điểm sao cho
khi và chỉ khi M là hình chiếu của I lên mặt phẳng (Oxy)
Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)
\(T=MA^2+MB^2+MC^2\)
\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(T=3MG^2+GA^2+GB^2+GC^2\)
Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)
\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)
Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)
M là giao điểm (d) và (P) nên thỏa mãn:
\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)
Đáp án B
Cách giải:
d : x - 2 1 = y - 1 - 2 = z - 1 2 có 1 VTCP v → =(1;-2;2) là một VTCP của ∆
∆ là đường thẳng qua A, vuông góc với d ⇒ ∆ ⊂ ( α ) mặt phẳng qua A và vuông góc d mặt phẳng qua A và vuông góc d
Phương trình mặt phẳng α
khi và chỉ khi đi qua hình chiếu H của B lên α
*) Tìm tọa độ điểm H:
Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của α có phương trình:
Chọn D
Cách giải:
* Xét mặt phẳng chứa AB và d : Gọi A’ là điểm đối xứng của A qua ∆ ; α là mặt phẳng qua A, vuông góc với d
Khi đó, giao điểm H của ∆ với α là trung điểm của AA’
khi và chỉ khi I trùng với I0 là giao điểm của A’B và ∆
HI0 là đường trung bình của tam giác