Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
Ta thấy không cùng phương nên ba điểm A, B, C không thẳng hàng.
M cách đều hai điểm A, B nên điểm M nằm trên mặt trung trực của AB. M cách đều hai điểm B, C nên điểm M nằm trên mặt trung trực của B, C.
Do đó tập hợp tất cả các điểm m cách đều ba điểm A, B, C là giao tuyến của hai mặt trung trực của AB và BC.
Gọi (P), (Q) lần lượt là các mặt phẳng trung trực của AB và BC. K(0; 3/2; 1/2) là trung điểm AB; N(1/2; -1/2; 1) là trung điểm BC.
(P) đi qua K và nhận làm véctơ pháp tuyến nên (P): hay (P): 2x - y + z + 1 = 0
(Q) đi qua N và nhận làm véctơ pháp tuyến nên (Q): hay (Q): 3x - 5y +2z - 6 = 0
Ta có . Nên d có véctơ chỉ phương
Cho y = 0 ta sẽ tìm được x = -8, z = 15 nên (-8; 0; 15) ∈ d. Vậy .
Chọn C
Ta có , suy ra bốn điểm A, B, C, D không đồng phẳng. Gọi (P) là mặt phẳng cách đều bốn điểm A, B, C, D.
TH1: Có một điểm nằm khác phía với ba điểm còn lại so với (P). Có bốn mặt phẳng thỏa mãn.
TH2: Mỗi phía của mặt phẳng (P) có hai điểm. Có ba mặt phẳng thỏa mãn.
Vậy có bảy mặt phẳng thỏa mãn.