K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Chọn B

Gọi tâm mặt cầu nội tiếp tứ diện OABC là I (x; y; z). Ta có phương trình (OBC): x - z = 0. Phương trình mặt phẳng (ABC): 5x + 3y + 4z - 15 = 0. Tâm I cách đều hai mặt phẳng (OBC) và (ABC) suy ra:

Nhận xét: hai điểm A và O nằm về cùng phía với (α) nên loại (α). Hai điểm A và O nằm về khác phía (β) nên nhận (β). Thấy ngay một vectơ pháp tuyến là (10; a; b) thì a = 3, b = -1. Vậy a + b = 2

24 tháng 11 2018

26 tháng 7 2017

 

6 tháng 11 2018

Đáp án D

Từ giả thiết ta suy ra

Từ đó suy ra n p →  = (2; -5; -4) là một vectơ pháp tuyến của (P)

29 tháng 8 2018

Chọn A

Cách 1:

 

 

Cách 2: Ta có  nên hai mặt cầu cắt nhau theo một đường tròn giao tuyến.

 

Gọi I = AB ∩ (α) với (α) là mặt phẳng thỏa mãn bài toán.

Hạ  vuông góc với mặt phẳng .

Khi đó ta có I nằm ngoài AB và B là trung điểm AI 

Suy ra I (2;1;2). Gọi (α): a(x-2) + b(y-1) + c(z-2) = 0.

Vì (α) // CD   nên ta có 2a + b - 2c = 0 => b = 2c - 2a

Ta có hai trường hợp:

Nếu b = -2c; a = 2c => (α): 2c (x-2) + 2c (y-1) + c(z-2) = 0 => 2x - 2y + z - 4 = 0

Mặt khác CD // (α) nên CD ∉ (α) loại trường hợp trên.

Nếu b = c;  a = c/2 =>  (α): c/2 . (x-2) + c (y-1) + c(z-2) = 0 => x + 2y + 2z - 8 = 0

Kiểm tra thấy CD ∉ (α) nên nhận trường hợp này. Vậy (α): x + 2y + 2z - 8 = 0

25 tháng 11 2017

Mặt cầu (S) có tâm I (1;-2;3) và bán kính R= 33.

Vì (α): ax+by-z+c=0 đi qua hai điểm A (0; 0; -4), B (2; 0; 0) nên c = -4 và a = 2.

Suy ra (α): 2x+by-z-4=0.

Đặt IH = x, với 0 < x < 33 ta có

Thể tích khối nón là

4 tháng 9 2017

30 tháng 4 2017

30 tháng 6 2019

Chọn C

1 tháng 2 2017

Đáp án A

Phương pháp giải:

Xét vị trí tương đối của mặt phẳng, gọi phương trình tổng quát của mặt phẳng và tính toán dựa vào điều kiện tiếp xúc

Lời giải:

Gọi phương trình mặt phẳng cần tìm là (P): ax+by+cz+d=0

suy ra mp(P)//BC hoặc đi qua trung điểm của BC.

Mà  B C   → = ( - 4 ; 0 ; 0 )  và mp  vuông góc với mp (Oyz) => (P) //BC

Với  (P) //BC => a = 0 => by+cz+d=0

suy ra có ba mặt phẳng thỏa mãn