K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Qua điểm O kẻ tia Ot // Ox. Khi đó, A ^ = A O x ^  (2 góc so le trong).

Do O t ∥ O x O y ∥ O x nên   O t ∥ O y ,   B ^ = B O t ^  (2 góc so le trong)

Từ đó, ta có A O B ^ = A O t ^ + t O B ^ = A ^ + B ^ .

Vậy  A ^ + B ^ = A O B ^  (đpcm)

12 tháng 10 2017

đây là cậu chép trg chỗ giải đáp rồi mà mk ko đc lm giống trg giải đáp

23 tháng 10 2017

bài giải

2 tháng 6 2017

Nối A với K

Xét tam giác ABK và tam giác AHK có:

AK: cạnh chung

góc BAK = góc AKH (AB // HK)

góc HAK = góc AKB (AH //BK)

=> tam giác ABK = tam giác AHK

=> AB = HK (hai cạnh tương ứng)

Ta có: tam giác ABK = tam giác AHK

=> AH = BK (hai cạnh tương ứng)

1 tháng 12 2017

kẻ đoạn thẳng AK

Xét tamgiác KAH và tam giác AKB

góc HAK = góc BKA (2 góc so le trong do AK cắt AH// BK )

cạnh AK chung

góc HKA = góc BAK (2 góc so le trong do AB //HK )

=> tam giác KAH = tam giác AKB ( g.c.g.)

=> AB=HK (2 cạnh tương ướng )

=> AH = BK (2 cạnh tương ướng )

đúng không..............................................

27 tháng 7 2017

pn ơi hình như đề sai a+5/a-5 va b+6/b-6

27 tháng 7 2017

ta có : a+5/a-5=b+6/b-6
=> a+5/b+6=a-5/b-6
áp dụng dãy tỉ số bằng nhau ta được:
a+5/b+6=a-5/b-6 =(a+5+a-5)/(b+6+b-6)=(a+5-a+5)/(b+6-b+6)
=> 2a/2b = 10/12
=> a/b = 5/6

29 tháng 11 2023

sssssss

29 tháng 11 2023

a/

\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)

Mà Cz//Ax (gt)

=> Cz//By (cùng // với Ax)

b/

\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)

Ta có

Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)

c/

\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)

Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)

Xét tg vuông ACD có

\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

8 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Nếu:

\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\Leftrightarrow c\left(a+b\right)=a\left(c+d\right)\)

\(ac+bc=ac+ad\)

\(bc=ad\)

\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)

8 tháng 7 2017

Đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k

=> a=k.b ; c=k.d

Ta có :

\(\dfrac{a+b}{a}\)=\(\dfrac{b.k+b}{b}\)=\(\dfrac{b.\left(k+1\right)}{b}\)=k+1 ( 1 )

\(\dfrac{c+d}{c}\)=\(\dfrac{d.k+d}{d}\)=\(\dfrac{d.\left(k+1\right)}{d}\)=k+1 ( 2 )

Từ (1) và (2) thì : \(\dfrac{a+b}{a}\)=\(\dfrac{c+d}{c}\)

20 tháng 4 2017

a) Xét \(\Delta ADE;\Delta BDE:\)

AD = BD (gt)

ED chung

AE = BE (gt)

\(\Rightarrow\Delta ADE=\Delta BDE\left(c.c.c\right)\)

b) Vì \(\Delta ADE=\Delta BDE\) (câu a)

nên \(\widehat{DAE}=\widehat{DBE}\) (2 góc t/ư).

20 tháng 4 2017

Xem hình vẽ:

a) ∆ADE và ∆BDE có

DE cạnh chung

AD=DB(gt)

AE=BE(gt)

Vậy ∆ADE=∆BDE(c.c.c)

b) Từ ∆ADE=∆BDE(cmt)

Suy ra \(\widehat{DAE}\)=\(\widehat{DBE}\)(Hai góc tương ứng)


12 tháng 6 2017

Đặt\(a+c=2b\left(1\right);2bd=c\left(b+d\right)\left(2\right)\\ \)

Thay (1) vào (2):\(\left(a+c\right)d=c\left(b+d\right)\)

Khai triển hết ra r rút gọn là ok.

12 tháng 6 2017

Son Goku bạn giải hết ra giúp mik đi mik chậm hỉu lắm giúp mik đi mà!khocroi