Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left|x-y+1\right|\ge0\forall x,y\)
=>\(2\left|x-y+1\right|\ge0\forall x,y\) (1)
Ta có: \(\left|y-2\right|\ge0\forall y\)
=>\(3\left|y-2\right|\ge0\forall y\) (2)
Từ (1),(2) suy ra \(2\left|x-y+1\right|+3\left|y-2\right|\ge0\forall x,y\)
=>\(-2\left|x-y+1\right|-3\left|y-2\right|\le0\forall x,y\)
=>\(C=-2\left|x-y+1\right|-3\left|y-2\right|-4\le-4\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-y+1=0\\ y-2=0\end{cases}\Rightarrow\begin{cases}y=2\\ x=y-1=2-1=1\end{cases}\)

ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)
b. ta có :
\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)
\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)
cíu làm giúp với >=D.

\(A=2+2^2+2^3+2^4+.....2^{100}\)
\(=2.3+2^3.3+....2^{99}.3\)
\(=6\left(1+2^2+....2^{98}\right)⋮6\)
A = 2 + 2\(^2\) + 2\(^3\) + ...+ \(2^{100}\)
Xét dãy số: 1; 2; 3;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1+ 1 = 100
Vì 100 : 2 = 50
Nên nhóm 2 số hạng liên tiếp của A vào nhau ta được:
A = (2 + 2\(^2\)) + (\(2^3\) + \(2^4\)) + ...+(2\(^{99}\) + 2\(^{100}\))
A = 2.(2 + 1) + 2\(^3\).(1 + 2) + ...+ 2\(^{99}.\left(1+2\right)\)
A = 2.3 + 2\(^3\).3+ ...+ 2\(^{99}\). 3
A = 2.3.(1 + 2\(^3\) + ...+ 2\(^{99}\))
A = 6.(1+ 2\(^3\) + ... + 2\(^{99}\)) ⋮ 6 (đpcm)

a; 162 + 475 + 173 + 227 + 525 + 438
= (162 + 438) + (173 + 227) + (475 + 525)
= 600 + 400 + 1000
= 1000 + 1000
= 2000
b; 25.6 + 5.5.29 - 45.5
= 25.6 + 25.29 - 9.(5.5)
= 25.6 + 25.9 - 9.25
= 25.[6 + (29 - 9)]
= 25.[6 + 20]
= 25.26
= 650
c; chưa rõ 33 hay 3\(^3\) em ơi:
d; (52022 + 52021) : 52021
= \(\frac{104043}{52021}\)