K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Kết quả trung bình của 2 bạn là bằng nhau: \(\overline {{x_H}}  = \overline {{x_T}}  = 2,5\) (m)

b) +) Phương sai mẫu số liệu thống kê của bạn Hùng và Trung là:

\(s_H^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2} + {{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,008\)

\(s_T^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,004\)

+) 0,004 < 0,008 nên ta kết luận: Kết quả nhảy xa của bạn Trung ổn định.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Kết quả trung bình của Cung thủ A là:

\(\frac{{8 + 9 + 10 + 7 + 6 + 10 + 6 + 7 + 9 + 8}}{{10}} = 8\)

Kết quả trung bình của Cung thủ A là:

\(\frac{{10 + 6 + 8 + 7 + 9 + 9 + 8 + 7 + 8 + 8}}{{10}} = 8\)

b)

+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)

Xét mẫu số liệu đã sắp xếp là:

\(\begin{array}{*{20}{c}}6&6&7&7&8&8&9&9&{10}&{10}\end{array}\)

Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)

Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)

+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)

Xét mẫu số liệu đã sắp xếp là:

\(\begin{array}{*{20}{c}}6&7&7&8&8&8&8&9&9&{10}\end{array}\)

Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)

Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)

=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

Số trung bình \(\overline x  = \frac{{8.1 + 19.10 + 20.19 + 21.17 + 22.3}}{{1 + 10 + 19 + 17 + 3}} = 20,02\)

+) Sắp xếp các giá trị theo thứ tự không giảm: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{19},\underbrace {21,...,21}_{17},22,22,22\)

Trung vị \({M_e} = \frac{1}{2}(20 + 20) = 20\)

+) Mốt \({M_o} = 20\)

b)

+) Tình độ lệch chuẩn:

Phương sai \({S^2} = \frac{1}{{50}}\left( {{8^2} + {{10.19}^2} + {{19.20}^2} + {{17.21}^2} + {{3.22}^2}} \right) - 20,{02^2} \approx 3,66\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 1,91\)

+) Khoảng biến thiên \(R = 22 - 8 = 14\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 20\)

\({Q_1}\) là trung vị của mẫu:  \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{14}\). Do đó \({Q_1} = 20\)

\({Q_3}\) là trung vị của mẫu:  \(\underbrace {20,...,20}_5,\underbrace {21,...,21}_{17},22,22,22\). Do đó \({Q_3} = 21\)

+) x là giá trị ngoại lệ nếu \(x > 21 + 1,5(21 - 20) = 22,5\) hoặc \(x < 20 - 1,5.(21 - 10) = 18,5\).

Vậy có một giá trị ngoại lệ là 8.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:

160

162

164

165

172

174

177

178

180

 a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

160   162     164      165      172      174      177      178      180

Số trung bình cộng của mẫu số liệu trên là:

\(\overline x  = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)

Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)

 Tứ phân vị của mẫu số liệu trên là:

-  Trung vị của dãy 160   162  164   165 là: \({Q_1} = 163\)

- Trung vị của dãy  174   177  178   180 là: \({Q_3} = 177,5\)

- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)

b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)

Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)

c) Phương sai của mẫu số liệu trên là:

\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)

Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  \approx 7,13\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có: \(8 - 7 = 1;6 - 7 =  - 1;7 - 7 = 0;5 - 7 =  - 2;9 - 7 = 2\)

b) +) Bình phương các độ lệch là: \({(8 - 7)^2} = 1;{(6 - 7)^2} = 1;{(7 - 7)^2} = 0;{(5 - 7)^2} = 4;{(9 - 7)^2} = 4\)

+) Trung bình cộng của bình phương các độ lệch là:

\({s^2} = \frac{{{{(8 - 7)}^2} + {{(6 - 7)}^2} + {{(7 - 7)}^2} + {{(5 - 7)}^2} + {{(9 - 7)}^2}}}{5} = 2\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Trung bình cộng của 5 số trên là: \(\overline X  = \frac{{165 + 172 + 172 + 171 + 170}}{5} = 170\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Trước khi An gieo con xúc xắc, ta không thể biết bạn nào sẽ chiến thắng. Vì kết quả xúc xắc là ngẫu nhiên, không thể đoán trước

b) Các kết quả có thể xảy ra trong hai lần gieo là (lần lượt số chấm theo thứ tự gieo xúc xắc): 11; 12; 13; 14; 15; 16; 21; 22; 23; 24; 25; 26; 31; 32; 33; 34; 35; 36; 41; 42; 43; 44; 45; 46; 51; 52; 53; 54; 55; 56; 61; 62; 63; 64; 65; 66

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)

b)

+) Lớp 10A

Số trung bình \(\overline x  = \frac{{5.1 + 6.4 + 7.5 + 8.8 + 9.14 + 10.8}}{{1 + 4 + 5 + 8 + 14 + 8}} = 8,35\)

Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,6,7,7,7,7,7,\underbrace {8,...,8}_8,\underbrace {9,...,9}_{14},\underbrace {10,...,10}_8\)

Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(9 + 9) = 9\)

Mốt \({M_e} = 9\)

+) Lớp 10B

Số trung bình \(\overline x  = \frac{{5.4 + 6.6 + 7.10 + 8.10 + 9.6 + 10.4}}{{4 + 6 + 10 + 10 + 6 + 4}} = 7,5\)

Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,5,5,5,\underbrace {6,..,6}_6,\underbrace {7,...,7}_{10},\underbrace {8,...,8}_{10},\underbrace {9,...,9}_6,10,10,10,10\)

Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 8) = 7,5\)

Mốt \({M_e} = 7;{M_e} = 8.\)

+) Lớp 10C

Số trung bình \(\overline x  = \frac{{5.1 + 6.3 + 7.17 + 8.11 + 9.6 + 10.2}}{{1 + 3 + 17 + 11 + 6 + 2}} = 7,6\)

Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,\underbrace {7,...,7}_{17},\underbrace {8,...,8}_{11},\underbrace {9,...,9}_6,10,10\)

Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 7) = 7\)

Mốt \({M_e} = 7\)

+) So sánh:

Số trung bình: \(8,35 > 7,6 > 7,5\) => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.

Số trung vị: \(9 > 7,5 > 7\)=> Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.

Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C.

28 tháng 1 2017

Chọn C.

 

+ Điểm trung bình của học sinh A:

+ Điểm trung bình của học sinh B:

14 tháng 5 2017

Điểm số của xạ thủ A có:

x   ≈   8 , 3   đ i ể m ,   s 1 2 ≈   1 , 6 ;   s 1   ≈   1 , 27 .

Điểm số của xạ thủ B có

y   ≈   8 , 4   đ i ể m ,   s 2 2 ≈   1 , 77 ;   s 2   ≈   1 , 27 .