Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kết quả trung bình của Cung thủ A là:
\(\frac{{8 + 9 + 10 + 7 + 6 + 10 + 6 + 7 + 9 + 8}}{{10}} = 8\)
Kết quả trung bình của Cung thủ A là:
\(\frac{{10 + 6 + 8 + 7 + 9 + 9 + 8 + 7 + 8 + 8}}{{10}} = 8\)
b)
+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)
Xét mẫu số liệu đã sắp xếp là:
\(\begin{array}{*{20}{c}}6&6&7&7&8&8&9&9&{10}&{10}\end{array}\)
Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)
Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)
+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)
Xét mẫu số liệu đã sắp xếp là:
\(\begin{array}{*{20}{c}}6&7&7&8&8&8&8&9&9&{10}\end{array}\)
Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)
Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)
=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.
a)
Số trung bình \(\overline x = \frac{{8.1 + 19.10 + 20.19 + 21.17 + 22.3}}{{1 + 10 + 19 + 17 + 3}} = 20,02\)
+) Sắp xếp các giá trị theo thứ tự không giảm: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{19},\underbrace {21,...,21}_{17},22,22,22\)
Trung vị \({M_e} = \frac{1}{2}(20 + 20) = 20\)
+) Mốt \({M_o} = 20\)
b)
+) Tình độ lệch chuẩn:
Phương sai \({S^2} = \frac{1}{{50}}\left( {{8^2} + {{10.19}^2} + {{19.20}^2} + {{17.21}^2} + {{3.22}^2}} \right) - 20,{02^2} \approx 3,66\)
=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,91\)
+) Khoảng biến thiên \(R = 22 - 8 = 14\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
\({Q_2} = {M_e} = 20\)
\({Q_1}\) là trung vị của mẫu: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{14}\). Do đó \({Q_1} = 20\)
\({Q_3}\) là trung vị của mẫu: \(\underbrace {20,...,20}_5,\underbrace {21,...,21}_{17},22,22,22\). Do đó \({Q_3} = 21\)
+) x là giá trị ngoại lệ nếu \(x > 21 + 1,5(21 - 20) = 22,5\) hoặc \(x < 20 - 1,5.(21 - 10) = 18,5\).
Vậy có một giá trị ngoại lệ là 8.
Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:
160 | 162 | 164 | 165 | 172 | 174 | 177 | 178 | 180 |
a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
160 162 164 165 172 174 177 178 180
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)
Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)
Tứ phân vị của mẫu số liệu trên là:
- Trung vị của dãy 160 162 164 165 là: \({Q_1} = 163\)
- Trung vị của dãy 174 177 178 180 là: \({Q_3} = 177,5\)
- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)
b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)
c) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)
Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx 7,13\)
a) Ta có: \(8 - 7 = 1;6 - 7 = - 1;7 - 7 = 0;5 - 7 = - 2;9 - 7 = 2\)
b) +) Bình phương các độ lệch là: \({(8 - 7)^2} = 1;{(6 - 7)^2} = 1;{(7 - 7)^2} = 0;{(5 - 7)^2} = 4;{(9 - 7)^2} = 4\)
+) Trung bình cộng của bình phương các độ lệch là:
\({s^2} = \frac{{{{(8 - 7)}^2} + {{(6 - 7)}^2} + {{(7 - 7)}^2} + {{(5 - 7)}^2} + {{(9 - 7)}^2}}}{5} = 2\)
Trung bình cộng của 5 số trên là: \(\overline X = \frac{{165 + 172 + 172 + 171 + 170}}{5} = 170\)
a) Trước khi An gieo con xúc xắc, ta không thể biết bạn nào sẽ chiến thắng. Vì kết quả xúc xắc là ngẫu nhiên, không thể đoán trước
b) Các kết quả có thể xảy ra trong hai lần gieo là (lần lượt số chấm theo thứ tự gieo xúc xắc): 11; 12; 13; 14; 15; 16; 21; 22; 23; 24; 25; 26; 31; 32; 33; 34; 35; 36; 41; 42; 43; 44; 45; 46; 51; 52; 53; 54; 55; 56; 61; 62; 63; 64; 65; 66
a)
b)
+) Lớp 10A
Số trung bình \(\overline x = \frac{{5.1 + 6.4 + 7.5 + 8.8 + 9.14 + 10.8}}{{1 + 4 + 5 + 8 + 14 + 8}} = 8,35\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,6,7,7,7,7,7,\underbrace {8,...,8}_8,\underbrace {9,...,9}_{14},\underbrace {10,...,10}_8\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(9 + 9) = 9\)
Mốt \({M_e} = 9\)
+) Lớp 10B
Số trung bình \(\overline x = \frac{{5.4 + 6.6 + 7.10 + 8.10 + 9.6 + 10.4}}{{4 + 6 + 10 + 10 + 6 + 4}} = 7,5\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,5,5,5,\underbrace {6,..,6}_6,\underbrace {7,...,7}_{10},\underbrace {8,...,8}_{10},\underbrace {9,...,9}_6,10,10,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 8) = 7,5\)
Mốt \({M_e} = 7;{M_e} = 8.\)
+) Lớp 10C
Số trung bình \(\overline x = \frac{{5.1 + 6.3 + 7.17 + 8.11 + 9.6 + 10.2}}{{1 + 3 + 17 + 11 + 6 + 2}} = 7,6\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,\underbrace {7,...,7}_{17},\underbrace {8,...,8}_{11},\underbrace {9,...,9}_6,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 7) = 7\)
Mốt \({M_e} = 7\)
+) So sánh:
Số trung bình: \(8,35 > 7,6 > 7,5\) => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.
Số trung vị: \(9 > 7,5 > 7\)=> Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.
Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C.
Chọn C.
+ Điểm trung bình của học sinh A:
+ Điểm trung bình của học sinh B:
Điểm số của xạ thủ A có:
x ≈ 8 , 3 đ i ể m , s 1 2 ≈ 1 , 6 ; s 1 ≈ 1 , 27 .
Điểm số của xạ thủ B có
y ≈ 8 , 4 đ i ể m , s 2 2 ≈ 1 , 77 ; s 2 ≈ 1 , 27 .
a) Kết quả trung bình của 2 bạn là bằng nhau: \(\overline {{x_H}} = \overline {{x_T}} = 2,5\) (m)
b) +) Phương sai mẫu số liệu thống kê của bạn Hùng và Trung là:
\(s_H^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2} + {{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,008\)
\(s_T^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,004\)
+) 0,004 < 0,008 nên ta kết luận: Kết quả nhảy xa của bạn Trung ổn định.