Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-1)(x-3)-3x+1≤(x-1)(x+3)+x2-5
<=> 2x2-6x-x+3-3x+1≤x2+3x-x-3+x2-5
<=> -12x≤-6
<=>x≥\(\frac{1}{2}\)
Vậy nghiệm của bpt là S=[\(\frac{1}{2}\);+∞)
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0.\)
\(x\) | \(-\infty\) \(-1\) \(\dfrac{2}{3}\) \(3\) \(+\infty\) |
\(x-3\) | - | - | - 0 - |
\(x+1\) | - 0 + | + | + |
\(2-3x\) | + | + 0 - | - |
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right).\) | + 0 - 0 + 0 + |
Vậy \(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0\) khi \(x\in\left(-\infty;-1\right)\cup\left(\dfrac{2}{3};3\right)\cup\left(3;+\infty\right).\)
\(\frac{2x+3}{x-1}< x+1\left(x\ne1\right)\)
\(\Leftrightarrow\frac{2x+3}{x-1}-x-1< 0\)
\(\Leftrightarrow\frac{2x+3-x^2+1}{x-1}< 0\)
\(\Leftrightarrow\frac{-x^2+2x+4}{x-1}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+2x-4< 0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}-x^2+2x-4>0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1-\sqrt{5}\\x>1+\sqrt{5}\end{matrix}\right.\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}1-\sqrt{5}< x< 1+\sqrt{5}\\x< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>1+\sqrt{5}\\1-\sqrt{5}< x< 1\end{matrix}\right.\)
Vậy...........
ĐKXĐ: \(x\ge3\)
\(\sqrt{x-1}>\sqrt{x-2}+\sqrt{x-3}\)
\(\Leftrightarrow x-1>2x-5+2\sqrt{x^2-5x+6}\)
\(\Leftrightarrow4-x>2\sqrt{x^2-5x+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\\left(4-x\right)^2>4\left(x^2-5x+6\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\3x^2-12x+8< 0\end{matrix}\right.\)
\(\Rightarrow\dfrac{6-2\sqrt{3}}{3}< x< \dfrac{6+2\sqrt{3}}{3}\)
Kết hợp ĐKXĐ \(\Rightarrow3\le x< \dfrac{6+2\sqrt{3}}{3}\)
x thuôc (-vc;-1]U(0;vc)
căn((x+1)/x) =t => t>=0 ; khác 1
<=> 1/t^2 -2t -3>0
<=> 2t^3 +3t^2 -1 <0
<=> (t+1)^2(2t -1) >0
=> t>1/2
(x+1)/x >1/4
(3x+4)/x >0
x thuộc (-vc;-4/3)U(0;vc)
ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x\le-1\end{matrix}\right.\)
- Với \(x>3\) BPT tương đương:
\(\left(x-3\right)\left(x+1\right)+2\sqrt{\left(x-3\right)\left(x+1\right)}-3< 0\)
\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}-1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}+3\right)< 0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 1\)
\(\Leftrightarrow x^2-2x-4< 0\Rightarrow3< x< 1+\sqrt{5}\)
- Với \(x\le-1\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-2\sqrt{\left(x-3\right)\left(x+1\right)}< 3\)
\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}+1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}-3\right)< 0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 9\Leftrightarrow x^2-2x-12< 0\)
\(\Rightarrow1-\sqrt{13}< x\le-1\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}3< x< 1+\sqrt{5}\\1-\sqrt{13}< x\le-1\end{matrix}\right.\)