\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) Gọi E là trung điểm BK

Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)

Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành

Chứng minh AE//NP//MQ (3) 

Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác

=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ

=> BQ _|_ NP

b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G

Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\)

=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)

Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)

=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)

Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)

Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)

\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)

5 tháng 4 2020

Cảm ơn nhiều ạ!

21 tháng 12 2024

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0