Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đặt z=x+yi
Ta có suy ra tập biểu diễn số phức z là đường tròn tâm M(0;0) bán kính R=1
(m > 0) suy ra tập biểu diễn số phức z là đường tròn tâm N( 3 ;1) bán kính r=m
Để tồn tại duy nhất số phức z thì 2 đường tròn phải tiếp xúc với nhau suy ra MN=R+r
Vậy tập S chỉ có 1 giá trị của m
Đáp án B
Ta có:
Tập hợp điểm M biểu diễn w là trung trực của nên là đường thẳng d qua trung điểm I(m-1;2) và có n → ( 4 ; - 2 )
Đặt
Do ω ⩾ 2 5 nên M nằm ngoài đường tròn tâm O bán kính R= 2 5
Lời giải:
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)
Lại có:
\(|z+\sqrt{3}+i|=m(m\geq 0)\)
\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)
\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)
Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.
Nếu \((O); (I)\) tiếp xúc ngoài:
\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)
Nếu \((O),(I)\) tiếp xúc trong.
TH1: \((O)\) nằm trong $(I)$
\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)
TH2: \((I)\) nằm trong $(O)$
\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )
Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
Đáp án D.
Ta có