\(\overline{z}\)=i . tìm mô- đun của số phức w= 1+i+z

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)

\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)

\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)

vậy .............................................................................................................

bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)

\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)

\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)

\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)

\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)

\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\)\(a^2-b^2=3\)

\(\Rightarrow a^2\)\(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)

\(\Rightarrow\) \(modul\) của số phức \(z\)\(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)

vậy ...................................................................................................................

hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi haha

2 tháng 6 2016

 gọi z= a + bi  \(\left(a,b\in R\right)\)

(2+i)(a+bi)=4-3i

\(\Leftrightarrow\) \(2a-b+\left(a+2b\right)i=4-3i\)

\(\Leftrightarrow\begin{cases}2a-b=4\\a+2b=-3\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1\\b=-2\end{cases}\)

\(z=1-2i\)

w= i(1-2i) + 2( 1+ 2i) = 4 + 5i

2 tháng 6 2016

Mình tưởng tìm moodun của một số \(\sqrt{a^2+b^2}\) chứ. @Nhók Lì Lợm

25 tháng 9 2016

Gọi \(z=a+bi\left(a,b\in R\right)\)

\(\left(2+i\right)\left(a+bi=4-3i\right)\)

\(\Leftrightarrow2a-b+\left(a+2b\right)i=4-3i\) 

\(\Leftrightarrow\begin{cases}2a-b=4\\a+2b=-3\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1\\b=-2\end{cases}\)

\(z=1-2i\)

\(w=i\left(1-2i\right)+2\left(1+2i\right)=4+5i\)

 

8 tháng 4 2016

Giả sử: \(z=x+yi\) \((x;y\in|R)\)

Ta có: \((1+i)z+2\overline{z}=2\)

  <=> \((1+i)(x+yi)+2(x-yi)=2\)

  <=> \(x+yi+xi-y+2x-2yi-2=0\)

  <=> \((3x-y-2)+(x-y)i=0\)

  <=> \(\begin{align} \begin{cases} 3x-y&=2\\ x-y&=0 \end{cases} \end{align}\)

  <=> \(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

=> \(z=1+i\)

Ta có: \(\omega=z+2+3i \)

               \(=1+i+2+3i\)

               \(=3+4i\)

=> \(|\omega|=\sqrt{3^2+4^2}=5\)

8 tháng 4 2016

Đặt \(z=a+bi\left(a,b\in R\right)\)

Theo bài ta có : \(\begin{cases}3a-b=2\\a-b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) nên \(z=1+i\)

Khi đó \(\omega=z+2+3i=1+i+2+3i=3+4i\)

Vậy \(\left|\omega\right|=\sqrt{3^2+4^2}=5\)

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i | 2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z 3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z 4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là...
Đọc tiếp

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i |

2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z

3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z

4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là số thực

5. Cho 3 điểm A, B, M lần lượt biểu diễn các số phức -4, 4i, x + 3i. Với giá trị thực nào của x thì A, B, M thẳng hàng?

6. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Xác định phần ảo của số phức \(3z_1-2z_2\)

7. Nếu mô đun số phức z bằng m thì mô đun của số phức \(\left(1-i\right)^2z\) bằng?

8. Trong tất cả các số phức z thỏa mãn hệ thức | z-1+3i | = 3. Tìm min | z-1-i |

9. Trong mặt phẳng phức tìm điểm biểu diễn số phức z = \(\frac{i^{2017}}{3+4i}\)

10. Trong mặt phẳng phức với hệ trục tọa độ Oxy, điểm biểu diễn của các số phức z = 3 + bi với b \(\in\) R luôn nằm trên đường có phương trình là: A. y = x B. x = 3 C. y = x + 3 D. y = 3

11. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Tổng hai số phức là?

12. Cho số phức z = 2 + 5i. Tìm số phức \(w=iz+\overline{z}\)

13. Ký hiệu \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2+z+1=0\). Tìm trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(w=\frac{i}{z_0}\): A. \(M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) B. \(M\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right)\) C. \(M\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) D. \(M\left(-\frac{1}{2};-\frac{\sqrt{3}}{2}\right)\)

14. Cho số phức z thỏa mãn hệ thức | z+7-5i | = | z-1-11i |. Biết rằng số phức z = x + yi thỏa mãn \(\left|z-2-8i\right|^2+\left|z-6-6i\right|^2\) đạt giá trị nhỏ nhất. Giá trị của biểu thức \(p=x^2-y^2\)?

15. Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(2z^2-6z+5=0\). Điểm nào sau đây biểu diễn số phức \(iz_0\): A. \(M\left(\frac{3}{2};\frac{1}{2}\right)\) B. \(M\left(\frac{3}{2};-\frac{1}{2}\right)\) C. \(M\left(-\frac{1}{2};\frac{3}{2}\right)\) D. \(M\left(\frac{1}{2};\frac{3}{2}\right)\)

16. Tính mô đun của số phức \(w=z^2+i\overline{z}\) biết z thỏa mãn \(\left(1+2i\right)z+\left(2+3i\right)\overline{z}=6+2i\)

17. Trong mặt phẳng phức, cho 3 điểm A, B, C lần lượt biểu diễn 3 số phức \(z_1=1+i\), \(z_2=\left(1+i\right)^2\), \(z_3=a-i\left(a\in R\right)\). Để tam giác ABC vuông tại B thì A bằng? A. -3 B. 3 C. -4 D. -2

18. Cho số phức z thỏa mãn (1+2i)z = 3+i. Tính giá trị biểu thức \(\left|z\right|^4-\left|z\right|^2+1\)

19. Cho số phức z = a + (a-1)i (a\(\in R\)). Giá trị thực nào của a để | z | = 1 ?

20. Cho số phức z thoả mãn hệ thức | z+5-i | = | z+1-7i |. Tìm giá trị lớn nhất của biểu thức P = | |z-4-i| - |z-2-4i| |

21. Trong các số phức z = a + bi thỏa mãn | z-1+2i | =1, biết rằng | z+3-i | đạt giá trị nhỏ nhất. Tính \(p=\frac{a}{b}\)

22. Gọi A, B, C lần lượt là các điểm biểu diễn các số phức \(z_1=-1+3i\), \(z_2=-3-2i\), \(z_3=4+i\). Chọn kết luận đúng nhất: A. Tam giác ABC cân B. Tam giác ABC đều C. Tam giác ABC vuông D. Tam giác ABC vuông cân

23. Cho số phức z = 5-3i. Tính \(1+\overline{z}+\left(\overline{z}\right)^2\)

24. Cho \(f\left(z\right)=z^3-3z^2+z-1\) với z là số phức. Tính \(f\left(z_0\right)-f\left(\overline{z_0}\right)\) biết \(z_0=1-2i\)

25. Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M (3;-4) là: A. \(\sqrt{13}\) B. \(2\sqrt{2}\) C. \(2\sqrt{5}\) D. \(2\sqrt{10}\)

6
NV
26 tháng 4 2019

Câu 1:

Gọi \(A\left(1;-1\right)\)\(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)

Gọi \(M\left(-2;-1\right)\)\(N\left(3;-2\right)\)\(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN

Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d

Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng

Phương trình đường thẳng d' qua M và vuông góc d có dạng:

\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)

\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)

Bài 2:

Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)

\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I

\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)

Câu 3:

\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)

\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)

NV
26 tháng 4 2019

Câu 4

\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)

\(=5m+3-\left(m^2+m-6\right)i\)

Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)

Câu 5:

\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)

Câu 6:

\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)

\(\Rightarrow b=12\)

Câu 7:

\(w=\left(1-i\right)^2z\)

Lấy môđun 2 vế:

\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)

Câu 8:

\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)

\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)

8 tháng 6 2016

Z= a+bi và \(\overline{Z}\) =a-bi → (1+2i).(a+bi) +(1+2a-2bi)i =1+3i

                              →a+bi +2ai -2b +i +2ai +2b=1+3i      (i2= -1)

                             → a+ (4a+b+1)i  = 1+3i

                           →\(\begin{cases}a=1\\4a+b+1=3\end{cases}\)  → a=1 , b=-2  → modum : \(\left|Z\right|\)=\(\sqrt{5}\)

7 tháng 4 2016

Giả sử: \(z=x+yi (x;y\in |R)\)

Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)

     <=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)

     <=>\(2x+2yi+2=3x-3yi+5i-i^2\)

     <=>\((3x-2x+1-2)+(5-3y-2y)i=0\)

     <=>\((x-1)+(5-5y)i=0\)

     <=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)

     <=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

Suy ra: z=1+i =>|z|=\(\sqrt{2}\)

7 tháng 4 2016

Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :

\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)

\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)

26 tháng 6 2018

bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(\left(i\overline{z}+3+i\right)\left(iz+1\right)=0\)

\(\Leftrightarrow\left(i\left(a-bi\right)+3+i\right)\left(i\left(a+bi\right)+1\right)=0\)

\(\Leftrightarrow\left(ai+b+3+i\right)\left(ai-b+1\right)=0\)

\(\Leftrightarrow-a^2-abi+ai+abi-b^2+b+3ai-3b+3-a-bi+i=0\)

\(\Leftrightarrow\left(-a^2-b^2-2b-a\right)+\left(4a-b\right)i=-3-i\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a^2-b^2-2b-a=-3\\4a-b=-1\end{matrix}\right.\) giải phương trình theo cách thế ta có

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\\\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow z=-1-3i;z=i\)

bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(z^2-\overline{z}=0\Leftrightarrow\left(a+bi\right)^2-\left(a-bi\right)=0\)

\(\Leftrightarrow a^2-b^2+2abi=a-bi\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-b^2=a\\2ab=-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=\pm\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow z=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i;z=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i\)

7 tháng 4 2016

 

Điều kiện \(z\ne0;\left|z\right|\ne1\)

\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)

                               \(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)

                               \(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)

Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :

\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)

\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)

\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)

Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện

Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện

Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)