Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Từ giả thiết suy ra và
Suy ra
Để hai vecto trên vuông góc với nhau khi và chỉ khi:
2k – 40 = 0 hay k = 20
Chọn C.
Từ giả thiết suy ra
Để 2 vecto trê vuông góc với nhau khi và chỉ khi:
nên 1.k + 2.2 = 0
Do đó: k = -4
B đối xứng với A qua O ⇒ O là trung điểm của AB
C có tung độ bằng 2 nên C(x; 2)
Tam giác ABC vuông tại C
Vậy có hai điểm C thỏa mãn là C1(1; 2) và C2(–1; 2).
`BC = \sqrt((4-2)^2+(3+1)^2) = 2\sqrt5`
`=> R=(BC)/2= \sqrt5`
`=> (C): (x-1)^2+(y-2)^2=5`
\(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(-1;0\right)\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\left(-4;-2\right)\)
Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)
Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)
\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))
\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)
\(\Leftrightarrow x=1;x=5\)
Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)