\(\left(y\right)=\left(2m-3\right)x+4m-3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

PT giao Ox: \(x=\dfrac{3-4m}{2m-3}\Leftrightarrow A\left(\dfrac{3-4m}{2m-3};0\right)\Leftrightarrow OA=\left|\dfrac{3-4m}{2m-3}\right|\)

PT giao Oy: \(y=4m-3\Leftrightarrow B\left(0;4m-3\right)\Leftrightarrow OB=\left|4m-3\right|\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-3\right)^2}{\left(4m-3\right)^2}+\dfrac{1}{\left(4m-3\right)^2}\)

\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{4m^2-12m+10}{\left(4m-3\right)^2}\\ \Leftrightarrow OH^2=\dfrac{16m^2-24m+9}{4m^2-12m+10}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow4m^2t-12mt+10t=16m^2-24m+9\\ \Leftrightarrow m^2\left(4t-16\right)-m\left(12t-24\right)+10t-9=0\)

Coi đây là PT bậc 2 ẩn m, PT có nghiệm

\(\Leftrightarrow\Delta=\left(12t-24\right)^2-4\left(10t-9\right)\left(4t-16\right)\ge0\\ \Leftrightarrow144t^2-576t+576-160x^2+784x-576\ge0\\ \Leftrightarrow-t^2+13t\ge0\\ \Leftrightarrow0\le t\le13\\ \Leftrightarrow OH\le\sqrt{13}\)

Dấu \("="\Leftrightarrow\) PT có nghiệm kép hay \(m=\dfrac{12t-24}{8t-32}=\dfrac{3t-6}{2t-8}=\dfrac{39-6}{26-8}=\dfrac{33}{18}\)

16 tháng 3 2017

cau1: gọi H là chân đường cao kẻ từ O đến đt (d) .\(\Rightarrow OH=2\)

giao điểm (d) và Oy la A(0,4) va giao diem (d) voi Ox la B(\(\dfrac{4}{1-m}\),0)

ta có \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(\Leftrightarrow\dfrac{1}{4}=\dfrac{1}{16}+\dfrac{\left(1-m\right)^2}{16}=\dfrac{1+\left(1-m\right)^2}{16}\)

\(\Rightarrow\left[{}\begin{matrix}1-m=\sqrt{3}\\1-m=-\sqrt{3}\end{matrix}\right.\Rightarrow m=1+\sqrt{3}\left(m>0\right)\)

cau2: goi \(\Delta\)là đường thẳng đi qua B(-5 ;20) vã C(7;-16) Pt \(\Delta\): y= ax+b

tọa độ B,C thõa mãn pt \(\Delta\)\(\left\{{}\begin{matrix}20=-5a+b\\-16=7a+b\end{matrix}\right.\Rightarrow a=-3;b=5\)

\(\Rightarrow\)y= -3x +5 (\(\Delta\)).để 3 điểm A ,B ,C thẳng hàng thi toa do A(\(\sqrt{x-1},-37\)).thoa pt\(\Delta\)

-37= -3\(\sqrt{x-1}+5\)\(\Leftrightarrow\sqrt{x-1}=14\)

\(\Rightarrow x=197\)

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

NV
10 tháng 2 2020

Gọi A và B lần lượt là giao điểm của (d) với trục Ox và Oy

\(\left(2m-3\right)x-1=0\Rightarrow x=\frac{1}{2m-3}\Rightarrow A\left(\frac{1}{2m-3};0\right)\Rightarrow OA=\frac{1}{\left|2m-3\right|}\)

\(y=\left(2m-3\right).0-1=-1\Rightarrow B\left(0;-1\right)\Rightarrow OB=1\)

Gọi H là chân đường vuông góc hạ từ O xuống AB

Áp dụng hệ thức lượng trong tam giác vuông OAB:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{\left(\frac{1}{\sqrt{5}}\right)^2}=\frac{1}{\frac{1}{\left(2m-3\right)^2}}+\frac{1}{1^2}\)

\(\Leftrightarrow\left(2m-3\right)^2+1=5\Rightarrow\left(2m-3\right)^2=4\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=\frac{1}{2}\end{matrix}\right.\)

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

NV
31 tháng 7 2020

Pt hoành độ giao điểm:

\(3x^2+2\left(m+1\right)x-1=0\) (1)

\(ac=-3< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) tại 2 điểm pb với mọi m

Do \(x_1;x_2\) là nghiệm nên: \(\left\{{}\begin{matrix}3x_1^2+2\left(m+1\right)x_1-1=0\\3x_2^2+2\left(m+1\right)x_2-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)x_1=\frac{1-3x_1^2}{2}\\\left(m+1\right)x_2=\frac{1-3x_2^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)\left(x_1+x_2\right)=1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2\)

\(f\left(x_1\right)-f\left(x_2\right)=x_1^3-x_2^3+\left(m+1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)\)

\(=\left(x_1-x_2\right)\left(x^2_1+x_2^2+x_1x_2+\left(m+1\right)\left(x_1+x_2\right)-1\right)\)

\(=\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2+1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2-1\right)\)

\(=-\frac{1}{2}\left(x_1-x_2\right)\left(x_1^2+x_2^2-2x_1x_2\right)=-\frac{1}{2}\left(x_1-x_2\right)^3\)