Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)
\(\triangle\varphi = 0\)
Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)
Để biên độ sóng tại M
\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)
=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)
\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)
=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)
M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)
\(-O_1O_2 < d_2-d_1 < O_1O_2\)
Thay (1) vào ta được
\(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)
=> \(-1,745 < k < 1,455\)
=> \(k = -1,0,1.\)
Vị trí cực đại giao thoa với hai nguồn cùng pha thỏa mãn điều kiện: \(d_1-d_2=k\lambda\)
Đường cực đại thứ nhất đi qua M1 thỏa mãn: \(d_1-d_2=1.\lambda=16cm\)(1)
Đường cực đại thứ 5 đi qua M2 thỏa mãn: \(d_1'-d_2'=5\lambda=24cm\)(2)
Lấy (2) - (1) vế với vế ta được: \(4\lambda=8\Leftrightarrow\lambda=2cm\)
Vận tốc: \(v=\lambda.f=2.10=20\)(cm/s)
Bạn sử dụng điều kiện cực đại giao thoa của 2 dao động cùng pha.
\(\lambda = v/f = 2cm.\)
Số điểm dao động cực đại thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -10 < k\lambda < 10. \\ \Rightarrow -5 < k < 5.\\ \Rightarrow k = -4,-3,-2,-1,0,1,2,3,4.\)
Có 9 điểm dao động với biên độ cực đại.
Số điểm dao động cực tiểu thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -10 < (2k+1)\lambda/2 < 10 \\ \Rightarrow -5,5 < k < 4,5 \\ \Rightarrow k = -5,-4,-3,-2,-1,0,1,2,3,4.\)
Có 10 điểm dao động với biên độ cực tiểu.
\(\triangle \varphi = \frac{\pi}{2}.\)
Số điểm dao động vân cực đại trên đoạn thẳng nối hai nguồn là:
\(-AB\leq d_2-d_1\leq AB \Rightarrow -AB\leq (k+\frac{\triangle\varphi)}{2 \pi}\lambda\leq AB \\ \Rightarrow -32 \leq (k+ \frac{1}{4}) \lambda \leq 32 \Rightarrow -3,45 \leq k \leq 2,95 \\ \Rightarrow k = -3,-2,-1,0,1,2.\)
Có 6 vân cực đại.
Số điểm dao động vân cực tiểu trên đoạn thẳng nối hai nguồn là:
\(-AB\leq d_2-d_1\leq AB \Rightarrow -AB\leq (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2}\leq AB \\ \Rightarrow -32 \leq (2k+1+\frac{1}{2})5 \leq 32 \\ \Rightarrow -3,95 \leq k \leq 2,45. \\ \Rightarrow k = -3,-2,-1,0,1,2.\)
Có 6 vân cực tiểu.
\(\lambda = v.T = \frac{v}{f}=\frac{50}{10}=5cm.\)
Tại M: \(d_{2M}-d_{1M}=18-3=15=3.5\) => M dao động mạnh nhất.
Tại N: \(d_{2N}-d_{1N}=45-10=35=7.5\) => N dao động mạnh nhất.
Khi tạo thành giao thoa, trên đoạn \(S_1S_2\), khoảng cách giữa 2 cực đại liên tiếp là \(\frac{\lambda}{2}\)
Suy ra: \(6\frac{\lambda}{2}=12\Rightarrow\lambda=4mm\)
Tốc độ truyền sóng: \(v=\lambda.f=4.50=200\)(mm/s) = 20 (cm/s)
2 điểm S1,S2 cung pha,giữa chúng có 10 điểm không dao động nghĩa là 10 điểm này cũng cùng pha với 2 nguồn. Với 10 điểm ở giữa sẽ chia AB thành 11 đoạn,10 điểm này lại cùng pha,khoảng cách giữa 2 điểm cùng pha gần nhất là lamda, vậy 11lamda=11=> lamda=1,v=f.lamda=26 B
\(\lambda = v/f = 5cm.\)
\(\triangle \varphi = \frac{\pi}{2}.\)
Số cực đại trên đoạn AB thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -12 < (k+\frac{1}{4})\lambda < 12. \\ \Rightarrow -2,65 < k < 2,15 \\ \Rightarrow k = -2,-1,0,1,2.\)
Có 5 cực đại.
Số cực tiểu trên đoạn AB thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -12 < (2k +1 + 1/2)\lambda/2 < 12 \\ \Rightarrow -3,15 < k < 1,65 \\ \Rightarrow k = -3,-2,-1,0,1.\)
Có 5 cực tiểu.
\(\lambda =v/f = 0.1m=10cm.\)
\(\triangle \varphi =0\)
Số điểm dao động với biên độ cực tiểu trên đoạn thẳng nối 2 nguồn là:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -AB < (2k+1+0)\lambda /2 < AB \\ \Rightarrow -40 < (2k+1)5 < 40 \\ \Rightarrow -4,5 < k < 3,5 \\ k = -4,-3,-2,-1,0,1,2,3.\)
Có 8 điểm dao động cực tiểu trên đoạn thẳng nối hai nguồn.