\(P_1,P_2\) dao động đồng pha cách nhau một đoạn bằng 40 cm. Sóng do...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

O
ongtho
Giáo viên
23 tháng 10 2015

\(\lambda =v/f = 0.1m=10cm.\)

\(\triangle \varphi =0\)

Số điểm dao động với biên độ cực tiểu trên đoạn thẳng nối 2 nguồn là:

\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -AB < (2k+1+0)\lambda /2 < AB \\ \Rightarrow -40 < (2k+1)5 < 40 \\ \Rightarrow -4,5 < k < 3,5 \\ k = -4,-3,-2,-1,0,1,2,3.\)

Có 8 điểm dao động cực tiểu trên đoạn thẳng nối hai nguồn.

13 tháng 1 2016

\(\triangle \varphi = \frac{\pi}{2}.\)

Số điểm dao động vân cực đại trên đoạn thẳng nối hai nguồn là: 

\(-AB\leq d_2-d_1\leq AB \Rightarrow -AB\leq (k+\frac{\triangle\varphi)}{2 \pi}\lambda\leq AB \\ \Rightarrow -32 \leq (k+ \frac{1}{4}) \lambda \leq 32 \Rightarrow -3,45 \leq k \leq 2,95 \\ \Rightarrow k = -3,-2,-1,0,1,2.\)

Có 6 vân cực đại.

Số điểm dao động vân cực tiểu trên đoạn thẳng nối hai nguồn là:

\(-AB\leq d_2-d_1\leq AB \Rightarrow -AB\leq (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2}\leq AB \\ \Rightarrow -32 \leq (2k+1+\frac{1}{2})5 \leq 32 \\ \Rightarrow -3,95 \leq k \leq 2,45. \\ \Rightarrow k = -3,-2,-1,0,1,2.\)

Có 6 vân cực tiểu.

13 tháng 1 2016

B

 

11 tháng 9 2015

\(\lambda = v/f = 5cm.\)

\(\triangle \varphi = \frac{\pi}{2}.\)

Số cực đại trên đoạn AB thỏa mãn:

\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -12 < (k+\frac{1}{4})\lambda < 12. \\ \Rightarrow -2,65 < k < 2,15 \\ \Rightarrow k = -2,-1,0,1,2.\)

Có 5 cực đại.

Số cực tiểu trên đoạn AB thỏa mãn:

\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -12 < (2k +1 + 1/2)\lambda/2 < 12 \\ \Rightarrow -3,15 < k < 1,65 \\ \Rightarrow k = -3,-2,-1,0,1.\)

Có 5 cực tiểu.

24 tháng 5 2017

28 tháng 7 2017

14 tháng 9 2015

\(\lambda = v/f = 2cm.\)

Số điểm dao động cực đại thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -10 < k\lambda < 10. \\ \Rightarrow -5 < k < 5.\\ \Rightarrow k = -4,-3,-2,-1,0,1,2,3,4.\)

Có 9 điểm dao động với biên độ cực đại.

Số điểm dao động cực tiểu thỏa mãn:

\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -10 < (2k+1)\lambda/2 < 10 \\ \Rightarrow -5,5 < k < 4,5 \\ \Rightarrow k = -5,-4,-3,-2,-1,0,1,2,3,4.\)

Có 10 điểm dao động với biên độ cực tiểu.

O
ongtho
Giáo viên
23 tháng 9 2015

Hai điểm có biên độ cực đại gần nhau nhất trên đoạn MN cách nhau \(\frac{\lambda}{2}\)

Suy ra: \(\frac{\lambda}{2}=1,5\Rightarrow\lambda=3\)cm.

Tốc độ truyền sóng: \(v=\lambda.f=3.40=120\)(cm/s) = 1,2 (m/s)

25 tháng 10 2015

\(\lambda\)=v/f=1.25 cm

khoảng cách 2 cực đại liên tiếp là \(\lambda\)/2=0.625 --->B

 

4 tháng 5 2016

Ta có  \(\lambda=\frac{v}{f}=\frac{200}{10}=20\left(cm\right)\). Do M là một cực đại giao thoa nên để  đoạn AM có giá trị lớn nhất thì M phải nằm trên vân cực đại bậc 1 như hình vẽ ở dưới và thõa mãn:

\(d_2-d_1=k\lambda=1.20=20\left(cm\right)\) (1). ( do lấy k= +1)

Mặt khác, do tam giác AMB là tam giác vuông tại A nên ta có :

  \(BM=d_2=\sqrt{\left(AB\right)^2+\left(AM\right)^2}=\sqrt{40^2+d^2_1}\) (2). Thay (2) vào (1)

ta được : \(\sqrt{40^2+d^2_1}-d_1=20\Rightarrow d_1=30\left(cm\right)\)

\(\rightarrow\)  Đáp án B

Hỏi đáp Vật lý

25 tháng 11 2015

Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là 

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)

\(\triangle\varphi = 0\)

Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)

Để biên độ sóng tại M 

\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)

=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)

\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)

=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)

M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)

        \(-O_1O_2 < d_2-d_1 < O_1O_2\)

Thay (1) vào ta được 

        \(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)

=> \(-1,745 < k < 1,455\)

=> \(k = -1,0,1.\)