Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Sử dụng tỉ số lượng giác trong tam giác vuông ∆AMO ta tính được A O M ^ = 60 0
b, Tính được A O B ^ = 120 0 , sđ A B C ⏜ = 120 0
c, Ta có A O C ⏜ = B O C ⏜ => A C ⏜ = B C ⏜
a) Xét \(\Delta\)AOB vuông tại B có
\(\cos\widehat{AOB}=\dfrac{OB}{OA}\)(Tỉ số lượng giác góc nhọn)
\(\Leftrightarrow\cos\widehat{AOB}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)
hay \(\widehat{AOB}=60^0\)
Vậy: \(\widehat{AOB}=60^0\)
b) Ta có: ΔOBA vuông tại B(OB⊥BA)
nên \(\widehat{AOB}+\widehat{BAO}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BAO}=30^0\)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AO là tia phân giác của \(\widehat{BAC}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{BAO}=\widehat{CAO}\)
hay \(\widehat{CAO}=30^0\)
Ta có: \(\widehat{CAO}+\widehat{MAO}=\widehat{MAC}\)(Vì tia AO nằm giữa hai tia AM,AC)
hay \(\widehat{MAO}=60^0\)
Xét ΔMOA có
\(\widehat{MAO}=60^0\)(cmt)
\(\widehat{MOA}=60^0\)(\(\widehat{AOB}=60^0\))
Do đó: ΔMOA đều(Dấu hiệu nhận biết tam giác đều)
⇒MA=MO(đpcm)
c) Ta có: ΔOBA vuông tại B(OB⊥BA)
mà BI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)
nên \(BI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AI=\dfrac{OA}{2}\)(I là trung điểm của OA)
nên BI=AI(1)
Ta có: ΔOCA vuông tại C(OC⊥CA)
mà CI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)
nên \(CI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AI=\dfrac{AO}{2}\)(I là trung điểm của OA)
nên CI=AI(2)
Từ (1) và (2) suy ra IA=IB=IC
hay I là giao điểm 3 đường trung trực của ΔABC
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: \(\widehat{BAC}=\widehat{BAO}+\widehat{CAO}\)(tia AO nằm giữa hai tia AB,AC)
hay \(\widehat{BAC}=60^0\)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)
nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)
Xét ΔABC đều có I là giao điểm 3 đường trung trực của tam giác(cmt)
mà trong tam giác đều, giao điểm 3 đường trung trực cũng chính là giao điểm của 3 đường phân giác(Định lí tam giác đều)
nên I là giao điểm của 3 đường phân giác trong ΔBAC
hay I là tâm đường tròn nội tiếp ΔABC(đpcm)
5:
a: góc OAM+góc OBM=180 độ
=>OAMB nội tiếp
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
b: góc DEB=1/2*sđ cung DB=90 độ
=>BE vuông góc DM
ΔDBM vuông tại B có BE là đường cao
nên MB^2=ME*MD
1: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
Gọi G là giao điểm của OM và AB
=>MO vuông góc với AB tại G
\(AM=R\sqrt{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}OG=\dfrac{R^2}{2R}=\dfrac{R}{2}\\GM=2R-\dfrac{R}{2}=\dfrac{3}{2}R\end{matrix}\right.\)
\(\Leftrightarrow AG=\dfrac{R^2\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
\(\left\{{}\begin{matrix}S_{AGM}=S_{BGM}=\dfrac{AG\cdot GM}{2}=\dfrac{R\sqrt{3}}{2}\cdot\dfrac{3R}{2}:2=\dfrac{3R^2\sqrt{3}}{8}\\S_{OGA}=S_{OGB}=\dfrac{OG\cdot GB}{2}=\dfrac{R}{2}\cdot\dfrac{R\sqrt{3}}{2}:2=\dfrac{R^2\sqrt{3}}{8}\end{matrix}\right.\)
\(S_{AOBM}=2\cdot\left(S_{AGM}+S_{OGA}\right)=2\cdot\dfrac{4R^2\sqrt{3}}{8}=R^2\sqrt{3}\)
2: Xét tứ giác NHBI có
\(\widehat{NHB}+\widehat{NIB}=180^0\)
Do đó: NHBI là tứ giác nội tiếp
Suy ra: \(\widehat{NHI}=\widehat{NBA}\)
\(MA=\frac{AB}{2}=\frac{R\sqrt{2}}{2}\)
\(sin\widehat{AOM}=\frac{AM}{AO}=\frac{R\sqrt{2}}{2}\div R=\frac{\sqrt{2}}{2}\Rightarrow\widehat{AOM}=45^o\)
\(\widehat{AOB}=2\widehat{AOM}=90^o\).