\(\alpha\left(0< \alpha< \dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Giải bài 7 trang 140 SGK Đại Số 10 | Giải toán lớp 10

9 tháng 4 2017

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy : (E) : \frac{x^2}{4} +\frac{y^2}{1} =1

11 tháng 5 2017

Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha,cos\alpha< 0;tan\alpha,cot\alpha< 0\).
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)=sin\alpha< 0\).
\(sin\left(\dfrac{\pi}{2}+\alpha\right)=cos\alpha< 0\).
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)=tan\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)\)\(=tan\left(-\dfrac{\pi}{2}-\alpha\right)\)\(=-tan\left(\dfrac{\pi}{2}+\alpha\right)=cot\left(\alpha\right)>0\).
\(cot\left(\alpha+\pi\right)=cot\left(\alpha\right)>0\).

15 tháng 4 2017

Với 0 < α < :

a) sin(α - π) < 0; b) cos( - α) < 0;

c) tan(α + π) > 0; d) cot(α + ) < 0

11 tháng 5 2017

\(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
a) \(sin\left(\alpha-\pi\right)=-sin\left(\pi-\alpha\right)=-sin\alpha< 0\).
b) \(cos\left(\dfrac{3\pi}{2}-\alpha\right)=cos\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)=cos\left(-\dfrac{\pi}{2}-\alpha\right)\)
\(=cos\left(\dfrac{\pi}{2}+\alpha\right)=-sin\alpha< 0\).
c) \(tan\left(\alpha+\pi\right)=tan\alpha>0\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=-tan\alpha< 0\).

30 tháng 3 2017

a) Hai điểm đối xứng nhau qua trục hoành thì có hoành độ bằng nhau và tung độ đối nhau.

M0 (x0; y0)=> A(x0;-y0)

b) Hai điểm đối xứng với nhau qua trục tung thì có tung độ bằng nhau còn hoành độ thì đối nhau.

M0 (x0; y0) => B(-x0;y0)

c) Hai điểm đối xứng nhau qua gốc O thì các tọa độ tương ứng đối nhau.

M0 (x0; y0) => C(-x0;-y0)

17 tháng 5 2017

a) Hai điểm đối xứng nhau qua trục Ox sẽ có cùng hoành độ và tung độ là hai số đối nhau.
\(M\left(4;3\right)\)\(\Rightarrow A\left(4;-3\right)\).
M A O 4 3 -3

17 tháng 5 2017

b) Hai điểm đối xứng qua trục Oy sẽ có cùng tung độ và hoành độ là hai số đối nhau.
\(M\left(4;3\right)\)\(\Rightarrow A\left(-4;3\right)\).
O x y 4 -4 3 M A

11 tháng 5 2017

b) Do \(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
Vì vậy:
\(cos\alpha=\sqrt{1-0,6^2}=\dfrac{4}{5}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=0,6:\dfrac{4}{5}=0,75;cot\alpha=1:tan\alpha=\dfrac{4}{3}\).

11 tháng 5 2017

Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(sin\alpha>0;tan\alpha< 0;cot\alpha< 0\).
\(sin\alpha=\sqrt{1-cos^2\alpha}=\dfrac{\sqrt{51}}{10}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{51}}{10}:\left(-0,7\right)=-\dfrac{\sqrt{51}}{7}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{-7}{\sqrt{51}}\).

15 tháng 4 2017

a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0

sinα =

cotα = ; tanα =

b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0

cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141

tanα ≈ 0,9802; cotα ≈ 1,0202.

c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0

cosα = ≈ -0,4229.

sinα =

cotα = -

d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0

Ta có: tanα =

sinα =

cosα =