K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Ai trả lời câu này giúp m đc ko ạ
a) Tứ giác CENB có \(\widehat{CEN}=\widehat{CBN}=90^o\) nên bốn điểm B, C, E, N cùng thuộc đường tròn đường kính CN.
b) Ta có ngay \(\Delta MAC\sim\Delta CBN\left(g-g\right)\Rightarrow\frac{AM}{BC}=\frac{AC}{NB}\Rightarrow AM.BN=AC.BC\)
c) Ta có \(S_{AMNB}=\frac{\left(AM+BN\right).AB}{2}\)
Do AB, AM không đổi nên SAMNB lớn nhất khi và chỉ khi BN lớn nhất.
\(BN=\frac{AC.CB}{AM}\le\frac{\frac{\left(AC+CB\right)^2}{4}}{AM}=\frac{AB^2}{4AM}\)
Dấu bằng xảy ra khi \(AC=CB\) hay C là trung điểm AB.