Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
Ta có : góc BOC = 180°-AOC = 180°-160°=20°
+Xét góc BOD có : góc BOC < góc BOD => OC nằm giữa hai tia OB và OD (1)
+ Ta có : góc COD = 40°-BOC = 40°-20 °= 20°
=> BOC = AOC (=20°) (2)
Từ (1) và (2) => OC là tia phân giác của góc BOD
Mà tui biết làm bài này ròi , không cần làm đâu
Đây là chữ tui thật nhá
Xem ảnh :
a) Vì OB' là tia p/g của góc A'OC nên góc A'OB' = A'OC /2 = 90o/ 2 = 45o
Vì tia OB' nằm giữa hai tia OA và OA' nên góc A'OB' + B' OA = A'OA
=> 45o + B'OA = 180o
=> B'OA = 180o - 45o = 135o
=> Góc B'OA + AOB = 135o + 45o = 180o Mà tia OA nằm giữa 2 tia OB và OB' ( Vì tia OB và OB' nằm ở nửa mp khác nhau bờ là AA')
=> góc BOB' = 180o => tia OB và OB' đối nhau
ta có góc AOB = A'OB' (= 45o) Mà tia OA và OA' đối nhau ; tia OB và OB' đối nhau
=> 2 góc AOB và A'OB' đối nhau
b) Tia OD nằm giữa 2 tia OB và OB' => góc B'OD + DOB = BOB"
=> B'OD + 900 = 180o
=> B'OD = 90o
Lại có tia OA' nằm giữa 2 tia OD và OB'
=> góc A'OB' + A'OD = B'OD
=> 45o + A'OD = 90o => góc A'OD = 45o
Ta có \(\left\{{}\begin{matrix}\widehat{O_1}+\widehat{O_2}=180^0\left(kề.bù\right)\\\widehat{O_3}+\widehat{O_4}=180^0\left(kề.bù\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{O_2}=180^0-140^0=40^0\\\widehat{O_4}=180^0-130^0=150^0\end{matrix}\right.\)
\(\widehat{AOB}=\widehat{O_2}+\widehat{O_4}=40^0+50^0=90^0\\ \Rightarrow OA\perp OB\)
a. Trên cùng nửa mặt phẳng bờ là đường thẳng AM
có góc BOC< MOC (70 độ<115 độ)
nên tia OB nằm giữa hai tia OM và OC
b.Vì tia OB nằm giữa hai tia OM và OC
nên góc MOB+ góc BOC= góc MOC
góc MOB= MOC - BOC
góc MOB= 115 - 70
góc MOB= 45 độ
vậy góc MOB= 45 độ
Trên cùng nửa mặt phẳng bờ là đường thẳng AM
có góc MOC< góc AOM ( 115 độ< 180 độ )
nên tia OC nằm giữa hai tia OA và OM
suy ra góc AOC + góc MOC = góc AOM
góc AOC = góc AOM - góc MOC
góc AOC = 180 độ - 115 độ
góc AOC =65 độ
c. Vì góc AOD = góc MOB = 45 độ
nên tia OB và tia OD là hai tia đối nhau
suy ra ba điểm D, O, B thẳng hàng