K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 3 2020
Vì PB=MP nên tam giác BMP cân
Mà \(\widehat{MPB}\)=\(\widehat{MPC}\)(cùng chắn cung AB = cung AC) =60o
=> tam giác BMP đều
Xét tam giác AMB và tam giác CPB, có: AB=BC, AM=BP, góc MAB = PCB ( cùng chắn cung BP)
=> tam giác AMB = tam giác CPB => AM=CP
=> AP= AM+MP=CP+BP
NN
25 tháng 3 2020
Bạn Trần Phương LInh làm sai ở chỗ xét hai tam giác
Xét tam giác AMB và tam giác CPB có
AB = BC (tam giác ABC đều )
\(\widehat{ABM}=\widehat{CBP}\) ( CÙNG + \(\widehat{MBC}=60^0\))
MB = BP ( tam giác BMP đều )
=) tam giác AMB = tam giác CPB ( c - g - c )
ABC=90
a,Ta có góc ABC =góc BAC=góc BCA=60•(ABC là Δ đều ) =>BPA=60•
Xét ΔBAQ và ΔBAP có
góc A chung
góc ABQ=góc BPA(60•)
=> ΔBAQ~ΔBPA(g.g)
=>BA/PA=AQ/AB
=>BA2=AP.AQ mà AB=BC
=>BC2=AP.AQ(đpcm )
b,trên đoạn PA lây điểm M sao cho PM=PB thì ta có Tam giác PMB là tam giác đều
vì góc ACB=60=PBM=>ABM=PBC
=> tam giác ABM = tam giác CBP(c.g.c)=> AM=PC
=>PB+PC==PM+AM=PA