Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ gt \(\Rightarrow n,k\ge2\)
Ta có:
\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác:
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)
Vậy bộ số (n,k,p)=(2,2,5)
\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).
Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).
+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\)
+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\)
\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)
\(\Rightarrow6⋮n^2+n-1\).
Không tồn tại n > 2 thoả mãn
Vậy...
Chọn C
Phương pháp: Dễ thấy u n = u n - 1 + 6 , ∀ n ≥ 2 suy ra dãy số đã cho là cấp số cộng công sai bằng 6.
Vậy ta cần tìm số hạng đầu.
Cách giải: Ta có
log 2 u 5 + log 2 u 9 + 8 = 11
V ậ y u 1 = u 5 - 4 . 6 = 8
Do đó:
S n = u 1 + u 2 + . . + u n
= n u 1 + n ( n - 1 ) 2 d
= 3 n 2 + 5 n
⇔ 3 n 2 + 5 n - 32 > 0
Vậy số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 là 3.
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ giả thiết \(\Rightarrow n,k\ge2\)
Ta có:
\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác :
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)
Vậy bộ số cần tìm là (n,k,p)=(2,2,5)
Nếu \(a\ne0\Rightarrow\lim\dfrac{an^3+bn^2+2n+4}{n^2+1}=\lim\dfrac{an+b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n}}=\infty\) ko thỏa mãn
\(\Rightarrow a=0\)
Khi đó: \(\lim\dfrac{bn^2+2n+4}{n^2+1}=\lim\dfrac{b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=b\Rightarrow b=1\)
\(\Rightarrow2a+b=1\)
Đáp án A