\(\dfrac{10x^2}{x^2-100}< 10\) là
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

10x2/x2-100 < 10

<=> 10x2/x2-100  - 10 <0

<=> 10x^2 - 10(x^2-100)/x^2 - 100 <0

<=> 1000/x^2-100 <0

<=> x^2 - 100 <0

<=> x^2 <100

<=> 0 <x <10

=> x nguyên dương => x= 1,2,3,...,9

=> tổng các nghiệm nguyên dương của bpt là 1+2+3+...+9=9.10/2 = 45

6 tháng 4 2017

Ta có: điều kiện xác định của bpt \(x+3-\dfrac{1}{x+7}< -\dfrac{1}{x+7}\)\(x\ne-7\)

\(\Rightarrow x=-7\) không phải là nghiệm của bpt trên

Lại có: \(x+3< 2\\ \Leftrightarrow x< 2-3\\ \Leftrightarrow x< -1\)

\(\Rightarrow x=-7\) thỏa mãn bpt \(x+3< 2\) \(\left(-7< -1\right)\)

7 tháng 4 2017

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).

5 tháng 4 2017

a)

x^2 +1 >0 mọi x

BPT \(\Leftrightarrow x^2+3x-10< 0\) {\(\Delta=9+40=49\)}

\(\Rightarrow-5< x< 2\)

b)

5+x^2 > 0 với mọi x BPT \(\Leftrightarrow20-2x-x^2-5>0\Leftrightarrow x^2+2x-15< 0\){\(\Delta'=1+15=16\)}

\(\Rightarrow-5< x< 3\)

8 tháng 5 2017

Đkxđ: \(\left\{{}\begin{matrix}5-x\ge0\\x-10>0\\\left(x-4\right)\left(x+5\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x>10\\x\ne4\\x\ne-5\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
Vậy BPT vô nghiệm.

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.

2 tháng 4 2017

a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)

2 tháng 4 2017

a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0

<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0

Bảng xét dấu:

Từ bảng xét dấu cho tập nghiệm của bất phương trình:

T = ∪ [2; +∞).

b) <=>

<=>

<=>

<=>

Tập nghiệm của bất phương trình T = (-; - 5) ∪ (- 1; 1) ∪ (1; +).

15 tháng 4 2017

a) <=>

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).

b) <=>

Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).

5 tháng 4 2017

câu b
- Xét m = 0. 
Phương trình trở thành: \(-10x-5=0\)\(\Leftrightarrow x=\dfrac{-1}{2}\) .
Khi m = 0 phương trình có nghiệm \(x=\dfrac{1}{2}\) (loại).
Xét \(m\ne0\) (1)

Phương trình vô nghiệm:  => \(\Delta< 0\) \(\Rightarrow25+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\) (2)

Kết hợp với điều kiện (1) suy ra với \(m>-5\)  thì phương trình vô nghiệm.

 

7 tháng 4 2017

Làm lại:

a)

\(5x^2-x+m\le0\)(a)

để (a)vô nghiệm \(\Rightarrow5x^2-x+m=0\) phải vô nghiệm => \(\Delta=1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)\(mx^2-10x-5\ge0\left(b\right)\)

Để b vô nghiệm cần

(1) \("a"\ne0\Rightarrow m\ne0\)

(2) \("a"< 0\Rightarrow m< 0\)

(3) \(\left[{}\begin{matrix}\Delta\\\Delta'\end{matrix}\right.< 0\Rightarrow\)\(5^2+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\)

(1)&(2)(3)Kết luận \(m< -5\)