Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\left(3\left|x\right|-2^4\right)\cdot7^3=2\cdot7^4\)
\(\Leftrightarrow3\left|x\right|-16=2\cdot7=14\)
=>3|x|=30
=>|x|=10
=>x=10 hoặc x=-10
Nếu không tính 2 quyển còn thừa ở lần 3 thì trước khi bán lần 3 có (10+2):4/5=12*5/4=15(quyển)
Nếu không tính 3 quyển thừa bán lẻ ở lần 2 thì trước lần 2 có (15+3):3/4=18*4/3=24(quyển)
Nếu không tính 4 quyển thừa bán lẻ lần 1 thì lúc đầu có:
(24+4):2/3=28*3/2=42(quyển)
Lần 1 bán được 42*1/3+4=18(quyển)
Lần 2 có 24*1/4+3=9(quyển)
Lần 3 bán được 42-18-9=15(quyển)
Gọi số học sinh đội tuyển toán là x (h/s) (x>0; x thuộc Z+)
Khi đó số học sinh đội tuyển anh là 8x/9 (hs); số học sinh đội tuyển văn la 5x/6 (hs)
Theo đề bài ta có phương trình
\(x+\dfrac{8x}{9}-\dfrac{5x}{6}=38\\ \Leftrightarrow x=36\left(TM\right)\)
,Vậy số học sinh của ba đội tuyển toán, anh,văn lần lượt là 36; 32; 30 học sinh
Gọi số thứ nhất là x (0 < x <100).
Khi đó: số thứ hai là: 100 - x
Do tăng số thứ nhất lên 2 lần và cộng thêm số thứ hai 5 đơn vị thì số thứ nhất gấp 5 lần số thứ hai, nên ta có phương trình:
\(x\cdot2=5\left(100-x+5\right)\)
<=> \(2x=500-5x+25\)
<=> \(2x+5x=500+25\)
<=> \(7x=525\)
<=> \(\text{x = 75}\) (TMĐK)
=> Số thứ nhất là: 75
=> Số thứ hai là: 100 - x = 100 - 75 = 25\(100-x=100-75=25\)
Đặt S= \(2\dfrac{1}{315}.\dfrac{1}{651}-\dfrac{1}{105}.3\dfrac{650}{651}-\dfrac{4}{315.651}+\dfrac{4}{105}\)
= \(\left(2+\dfrac{1}{315}\right).\dfrac{1}{651}-\dfrac{3}{315}.\left(3+\dfrac{651-1}{651}\right)-\dfrac{4}{315.651}+\dfrac{12}{315}\)
= \(\left(2+\dfrac{1}{315}\right).\dfrac{1}{651}-\dfrac{3}{315}.\left(3+1-\dfrac{1}{651}\right)-\dfrac{4}{315.651}+\dfrac{12}{315}\)
Đặt \(\dfrac{1}{315}=a,\dfrac{1}{651}=b\)
\(\Rightarrow S=\left(2+a\right).b-3a.\left(4-b\right)-4ab+12a\)
\(=2b+ab-12a+3ab-4ab+12a\)
\(=2b=\dfrac{2}{651}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{360-10}{10}=35\)
Do đó: a-1=140; b-2=105; c-3=70; d-4=35
=>a=141; b=107; c=73; d=39
2.
Gọi tổng số sản phẩm theo dự định là x ( SP) x > 0
Số ngày hoàn thành sản phẩm theo dự định là: \(\dfrac{x}{50}\) ngày
Tổng số sản phẩm heo thự tế là: x + 13 (SP)
Số ngày hòan thành sản phẩm theo thực tế là: \(\dfrac{x+13}{57}\) ngày
Theo đề ra ta có pt:
\(\dfrac{x}{50}-\dfrac{x+13}{57}=1\)
\(\Leftrightarrow57x-50x-650=2850\)
\(\Leftrightarrow7x-650=2850\)
\(\Leftrightarrow7x=3500\)
\(\Leftrightarrow x=500\) (nhận)
Vậy tổng số sản phẩm theo dự định là 500 (SP)
e)\(\dfrac{x-5}{75}+\dfrac{x-2}{78}+\dfrac{x-6}{74}+\dfrac{x-68}{12}=4\)
\(\Leftrightarrow\dfrac{x-5}{75}-1+\dfrac{x-2}{78}-1+\dfrac{x-6}{74}-1+\dfrac{x-68}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-80}{75}+\dfrac{x-80}{78}+\dfrac{x-80}{74}+\dfrac{x-80}{12}=0\)
\(\Leftrightarrow\left(x-80\right)\left(\dfrac{1}{75}+\dfrac{1}{78}+\dfrac{1}{74}+\dfrac{1}{12}\right)=0\)
\(\Leftrightarrow x=80\)(vì \(\dfrac{1}{75}+\dfrac{1}{78}+\dfrac{1}{74}+\dfrac{1}{12}\ne0\))
f)\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)(\(ĐKXĐ:x\ne-1;-3;-5;-7\))
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{6}{x^2+8x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow2x^2+16x+14=54\)
\(\Leftrightarrow2x^2+16x-40=0\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+4\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=6\\x+4=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
Giải:
Gọi số thứ 1, 2, 3 lần lượt là a, b, c
Ta có: \(\dfrac{2}{3}a=\dfrac{3}{4}b=\dfrac{4}{5}c\) và a + b + c = 147
\(\Rightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{147}{\dfrac{49}{12}}=36\)
\(\Rightarrow\left\{{}\begin{matrix}a=36.\dfrac{3}{2}=54\\b=\dfrac{36.4}{3}=48\\c=\dfrac{36.5}{4}=45\end{matrix}\right.\)
Vậy số thứ 1 là 84
số thứ 2 là 48
số thứ 3 là 45