Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
a) ta có : \(2x^2+3x\Leftrightarrow x\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\)
vậy mệnh đề này đúng
b) ta có số nguyên có 2 dạng :
+) \(x=2a\Rightarrow x^2=4x^2⋮2\) \(\Rightarrow x=2a\) là thỏa mãn
+) \(x=2a+1\Rightarrow x^2=4a^2+4a+1⋮̸2\) \(\Rightarrow x=2a+1\) là không thỏa mãn
\(\Rightarrow x=2a⋮2\)
vậy mệnh đề này đúng
c) ta có : vì phương trình \(X^2-aX+\left(a-1\right)\)
có : \(\Delta=a^2-4\left(a-1\right)=a^2-4a+4=\left(a-2\right)^2\ge0\)
luôn có nghiệm \(\Rightarrow\) \(x+y+xy\) có thể bằng \(-1\)
\(\Rightarrow\) mệnh đề này sai
d) cái này thì theo fetmat thì phải .
\(\Rightarrow n=2\) là duy nhất
\(\Rightarrow\) mệnh đề này đúng
vậy có \(3\) mệnh đề đúng
Giải sử tồn tại n để
A=n^2 +n+1 chia hết 2010
2010=67.5.2.3
=> A phải chia hết cho 2
A=n(n+1)+1 luôn là số lẻ => không tồn tại A chia hết cho 2010
a/ A đúng
\(\overline{A}:\exists x\in R,x^2< 0\)
b/ B đúng
\(\overline{B}:\forall x\in N,x\) ko phải là số nguyên tố
c/ C sai
\(\overline{C}:\forall x\in N,x⋮̸\) \(x+1\)
d/ D đúng
\(\overline{D}:\exists x\in N,n^4-n^2+1\) là số nguyên tố
e/ E sai
\(\overline{E}\) : mọi hình thang ko là hình vuông
f/ F đúng
\(\overline{F}:∄\)\(a\in R,a+1+\frac{1}{a+1}>2\)
- Nếu \(x=3k\Rightarrow x^2+1=9k^2+1⋮̸3\)
- Nếu \(x=3k+1\Rightarrow x^2+1=9k^2+6k+2=3\left(3k^2+2k\right)+2⋮̸3\)
- Nếu \(x=3k+2\Rightarrow x^2+1=9k^2+12k+5=3\left(3k^2+4k+1\right)+2⋮̸3\)
\(\Rightarrow x^2+1⋮̸3\) ;\(\forall x\in N\)
Mệnh đề sai