Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2-y^2\) chia 4 dư 0;1;3 mà \(1998\) chia 4 dư 2 nên PT vô nghiệm.
b.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm
#)Giải :
VD1:
a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1
nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2
=> Phương trình không có nghiệm nguyên
b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3
=> Phương trình không có nghiệm nguyên
vlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
sao khó vậy
\(x^2-y^2=2010\)
Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1
x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 )
mà 2010 chia 4 dư 2 (2)
từ (1) ; (2) Vậy phương trình vô nghiệm
Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.
Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.
Mà 1999 chia 8 dư 7
Suy ra phương trình không có nghiệm nguyên
. \(y^2=x^2+12x+1998\Leftrightarrow y^2=\left(x+6\right)^2+1962\Leftrightarrow y^2-\left(x+6\right)^2=1962.\)
\(\Leftrightarrow\left(y-x-6\right)\left(y+x+6\right)=1962.\) Phải phân tích số 1962 thành tích của hai số. Phân tích 1962 thành tích các thừa số nguyên tố : 1962 = 2.3.3.109. Chia trường hợp để xét, đưa về giải hệ hai phương trình 2 ẩn x, y.
- Trường hợp 1: \(\hept{\begin{cases}y-x-6=1\\y+x+6=1962\end{cases}\Leftrightarrow\hept{\begin{cases}y-x=7\\y+x=1956\end{cases}\Rightarrow}x,y\notin Z}\)
- Trường hợp 2: \(\hept{\begin{cases}y-x-6=2\\y+x+6=981\end{cases}\Leftrightarrow\hept{\begin{cases}y-x=8\\y+x=975\end{cases}\Rightarrow}x,y\notin Z.}\)
- Trường hợp 3: \(\hept{\begin{cases}y-x-6=6\\y+x+6=327\end{cases}\Leftrightarrow\hept{\begin{cases}y-x=12\\y+x=321\end{cases}\Rightarrow}x,y\notin Z.}\)
...... Tiếp tục xét ta thấy không có các số nguyên x, y nào thỏa mãn phương trình trên.