Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)
\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)
Mặt khác áp dụng BĐT Cauchy Schwarz:
\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)
Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3
TH1 : x > 1
|x-1| + |x-5| = 4
-x+1 - x + 5 = 4
-2x = -2
x = 1
TH2 : 1 < hoặc = x < 5
|x-1| + |x-5| = 4
x - 1 - x + 5 = 4
4 = 4 ( thỏa mãn vs mọi x )
TH2 : x > hoặc = 5
|x-1| + |x-5| = 4
x - 1 + x - 5 = 4
2x = 10
x = 5
\(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Dấu = xảy ra khi \(1\le x\le5\)
Vậy có 5 số
\(\left|x-5\right|=\left|5-x\right|\Rightarrow x-5\le0\Rightarrow x\le5\)
Vậy có 6 số thỏa mãn đề bài là: \(x\in\left\{0;1;2;3;4;5\right\}\)
|x-5|=5-x
=>x-5=5-x hoặc x-5=-5-x
=>x+x=5+5 hoặc x+x=-5+5
=>x=5 hoặc x=0
k cho mình nha