Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,de dang chung minh duoc la hinh chu nhat
2/ gọi o là giao điểm của am va np
vi tam giac vuong ahm co oh la duong trung tuyen nen oh=am/2
ma np=am nen oh cung bang np/2
do do tam giac nhp vuong tai h
3.np ngan nhat <=>am ngan nhat
<=>am la duong cao
<=>m trùng với h
<=> m là giao điểm của đường cao kẻ từ a với bc
c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A
=> \(\Delta ABC\)vuông tại A
Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A
d) Để tứ giác ANMP là hình vuông thì:
+ Tứ giác ANMP phải là hình thoi
+ Tứ giác ANMP có 1 góc vuông
(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)
Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)
Hok tốt ~
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
Suy ra: AD=MN
b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ
nên AMHD là tứ giác nội tiếp
=>A,M,H,D cùng thuộc 1 đường tròn (1)
Xét tứ giác AMDN có góc AMD+góc AND=180 độ
nên AMDN là tứ giác nội tiếp
=>A,M,D,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn
=>AMHN là tứ giác nội tiếp
=>góc AHM=90 độ
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
Suy ra: AD=MN
b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ
nên AMHD là tứ giác nội tiếp
=>A,M,H,D cùng thuộc 1 đường tròn (1)
Xét tứ giác AMDN có góc AMD+góc AND=180 độ
nên AMDN là tứ giác nội tiếp
=>A,M,D,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn
=>AMHN là tứ giác nội tiếp
=>góc AHM=90 độ
Câu hỏi của Cỏ Bốn Lá - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
ABCHMNPO
S ABC = \(\frac{1}{2}\)AH.BC=\(\frac{1}{2}\)AB.AC
suy ra : AH.BC=AB.AC
b) Tứ giác ANMP có \(\widehat{A}\)=\(\widehat{N}\)=\(\widehat{M}\)=90\(^0\)nên tứ giác ANMP là hình chữ nhật .
c) Gọi O là giao điểm hai đường chéo AM và NP của hình chữ nhật ANMP do đó O là trung điểm của đoạn AM và NP
tam giác AHM vuông tại H có HO là đường trung tuyến ứng với cạnh huyền AM nên HO =\(\frac{1}{2}\) AM = \(\frac{1}{2}\)NP (vì AM = NP ,hai đường chéo của hình chữ nhật ANMP )
Xét tam giác NHP có đường trung tuyến HO= \(\frac{1}{2}\)NP ,suy ra tam giác NHP vuông tại H
Vậy \(\widehat{NHP}\)= 90\(^0\)
d) Ta có : NP = AM ( Tính chất đường chéo hình chữ nhật )
NP nhỏ nhất khi AM nhỏ nhất
AM nhỏ nhất khi M trùng với H . Vậy NP nhỏ nhất khi M trung với H.