Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}\)
\(\Leftrightarrow\widehat{A}=180^o-45^{^{ }o}-30^o=105^o\)
Theo định lý hàm sin ta có :
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{AC}{sinB}.sinA\left(1\right)\)
\(sinA=sin105^o=sin\left(90^o+15^o\right)=cos15^o\)
\(cos30^o=2cos^215^o-1\)
\(\Leftrightarrow2cos^215^o=cos30^o+1\)
\(\Leftrightarrow cos^215^o=\dfrac{cos30^o+1}{2}\)
\(\Leftrightarrow cos^215^o=\dfrac{\dfrac{\sqrt[]{3}}{2}+1}{2}=\dfrac{\sqrt[]{3}+2}{4}\)
\(\Leftrightarrow cos15^o=\dfrac{\sqrt[]{\sqrt[]{3}+2}}{2}\left(0^o< 15^o< 90^o\right)\)
\(\left(1\right)\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{8a}{\dfrac{\sqrt[]{2}}{2}}.\dfrac{\sqrt[]{\sqrt[]{3}+2}}{2}\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{8a\sqrt[]{2}}{2}.\sqrt[]{\sqrt[]{3}+2}\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=4a\sqrt[]{\sqrt[]{2}\left(\sqrt[]{3}+2\right)}\)
Chọn B.
Áp dụng định lí cosin cho tam giác ta có:
a2 = b2 + c2 - 2bc.cosA = 36 + 64 - 2.6.8.cos600 = 52
do đó .
1.
\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)
Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)
Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)
\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)
\(\Leftrightarrow2y^2+10y+11=0\)
\(\Leftrightarrow y=...\)
2.
Kẻ \(EF\perp BC\)
\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)
Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)
Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)
\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)
Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE
\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)
Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))
Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)
\(\Rightarrow R=3r=\dfrac{9}{2}\)
Phương trình đường thẳng BC: a(x-2) + b(y-2)=0
cos(BA;BC)=cos\(45^0\)=\(\dfrac{1}{\sqrt{2}}=\dfrac{\left|a-b\right|}{\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\). Vì a,b không đồng thời bằng 0 nên suy ra \(\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Vì tọa độ C có hoành độ x lớn hơn 2 nên phương trình đường thẳng BC là y=2.
Ta có:\(S_{ABC}=\dfrac{1}{2}AB.BC.sin45^0\)\(\Leftrightarrow2=\dfrac{1}{2}\sqrt{8}\sqrt{\left(x_C-2\right)^2}.\dfrac{\sqrt{2}}{2}\Leftrightarrow x_C=4\)
Vậy tọa độ C(4;2)