K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lên mạng tra nha cou có đó

7 tháng 3 2021

Lên mạng tra cho nó nhanh

30 tháng 6 2020

A E B H D G F C

Ta có: EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒ EF // AC và EF = AC/2.

HA = HD, HC = GD

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2.

Do đó EF // HG, EF = HG

⇒ EFGH là hình bình hành.

a) Hình bình hành EFGH là hình chữ nhật

<=> EH ⊥ EF

<=>\(AC\perp BD\) (vì EH // BD, EF// AC)

b) Hình bình hành EFGH là hình thoi

<=>EF = EH

<=> AC = BD (Vì \(EF=\frac{AC}{2},EH=\frac{BD}{2}\))

c) EFGH là hình vuông

<=> EFGH là hình thoi và EFGH là hình chữ nhật

<=> AC = BD và .\(AC\perp DB\)

c: Ta có: \(EF\le KE+KF\)

\(\Leftrightarrow EF\le\dfrac{DC+AB}{2}\)

Dấu '='xảy ra khi E,K,F thẳng hàng

hay EF//AB//DC

Suy ra: ABCD là hình thang

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

26 tháng 8 2017

Mik chịu thôi, bó tay.com.

26 tháng 8 2017

1 . 

Ta có AB = BC (gt)

Suy ra  ∆ABC cân

Nên ˆA1=ˆC1A1^=C1^  (1)

Lại có ˆA1=ˆA2A1^=A2^ (2) (vì AC là tia phân giác của ˆAA^)

Từ (1) và (2) suy ra ˆC1=ˆA2C1^=A2^

nên BC // AD (do ˆC1,ˆA2C1^,A2^ ở vị trí so le trong)

Vậy ABCD là hình thang