Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2n-1\right)^3-2n+1\)
\(A=8n^3-6n+6n-1-2n+1\)
\(A=8n^3-2n=2n\left(4n^2-1\right)\)
\(A=2n\left(2n+1\right)\left(2n-1\right)\)
\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)
sách hay cái zì bạn?nếu đề thi hay bài tập bạn chụp rùi gửi mail(lethihuong34567890@gmail.com) cho mk đc hơm? còn nếu sách thì chỉ cần chụp bìa dc gùi
a) ta có: \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^o\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)
đồng thời: \(\widehat{AMB}+\widehat{ABM}=90^0\)
\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)
xét tam giác ABM và tam giác DMC có:
\(\widehat{MAB}=\widehat{MDC}=90^0\\ \widehat{ABM}=\widehat{DMC}\)
do đó tam giác ABM đồng dạng tam giác DMC(g-g)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{MD}{DC}\Rightarrow AB.DC=AM.MD\)
mà AM=MD, nên : \(AB.DC=AM.AM\)
b) vì tam giác ABM đồng dạng tam giác DMC nên:
\(\dfrac{BM}{MC}=\dfrac{AB}{MD}\:hay\:\dfrac{BM}{MC}=\dfrac{AB}{AM}\)
đồng thời: \(\widehat{MAB}=\widehat{MDC}=90^0\)
do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)
hình thang ABCD:M là trug điểmAD, N là trug điểmBC
- MN là đường trug bình HT ABCD(đlý)
- MN//AB//CD
- MN=(AB+CD)/2=(8+14)/2=11cm
ΔABD có: AM=MD(1),MI//AB(AB//MN)
- DI=IB(2)
từ (1) và (2)
- MI là đường trug bìnhΔABD(đlý)
- MI=1/2AB=1/2.6=3cm
Tương tự với ΔABC
- KN là đg trug bình ΔABC(đlý)
- KN=1/2AB=1/2.6=3cm
Ta có: MI+IK+KN=MN
3+IK+3=11
- IK=5cm
VẬY MI=3cm, IK=5m,KN=3cm
a, \(A=5x-x^2=-x^2+5x=-x^2+2x\cdot2,5-\dfrac{25}{4}+\dfrac{25}{4}\)
\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)
Có: \(-\left(x-2,5\right)^2\le0\forall x\)
=> \(-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
''='' xảy ra khi \(x-2,5=0\Rightarrow x=2,5\)
Vậy \(A_{MAX}=\dfrac{25}{4}\Leftrightarrow x=2,5\)
b, \(B=x-x^2=x^2-x=x^2-2\cdot x\cdot\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Lập luận như câu a
c, \(C=4x-x^2+3=-x^2+2\cdot x\cdot2-4+7\)
\(=-\left(x-2\right)^2+7\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
=> \(-\left(x-2\right)^2+7\le7\)
Dấu ''='' xảy ra khi và chỉ khi x = 2
Vậy \(C_{MAX}=7\Leftrightarrow x=2\)
d, \(D=-x^2+6x-11=-x^2+2\cdot x\cdot3-9-2\)
\(=-\left(x-3\right)^2-2\)
Vì \(-\left(x-3\right)^2\le0\forall x\)
=> \(-\left(x-3\right)^2-2\le-2\)
Dấu ''='' xảy ra khi và chỉ khi x - 3 = 0 => x = 3
Vậy \(D_{MAX}=-2\Leftrightarrow x=3\)
e, \(E=5-8x-x^2=-x^2-8x+5=-x^2-2\cdot x\cdot4-16+21\)
\(=-\left(x+4\right)^2+21\)
Lập luận như trên
f, \(F=4x-x^2+1=-x^2+4x+1=-x^2+2\cdot x\cdot2-4+5\)
\(=-\left(x-2\right)^2+5\)
Tượng tự mấy ý trc
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
c: Ta có: \(EF\le KE+KF\)
\(\Leftrightarrow EF\le\dfrac{DC+AB}{2}\)
Dấu '='xảy ra khi E,K,F thẳng hàng
hay EF//AB//DC
Suy ra: ABCD là hình thang