Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x}=t\left(t\ge0\right)\) ta có:
\(f\left(t\right)=t^8-t^5+t^2-t+1\)
*)Với \(t=0;t=1\Rightarrow f\left(t\right)=1>\)
*)Với \(0\le t< 1\) thì \(f\left(t\right)=t^8+\left(t^2-t^5\right)+1-t\)
\(\left\{{}\begin{matrix}t^8>0\\1-t>0\\t^2-t^5=t^3\left(1-t\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(t\right)>0\)
*)Với \(t\ge1\) thì \(f\left(t\right)=t^5\left(t^3-1\right)+t\left(t-1\right)+1>0\)
Vậy \(f\left(t\right)>0\forall t\ge0\Rightarrow x^4-\sqrt{x^5}+x-\sqrt{x}+1>0\forall x\ge0\)
Giữ nguyên bình phương và xét dấu như bình thường
Em bỏ bình phương nên xét dấu bị sai dẫn đến kết quả sai
a) \(x + y = 1 \Rightarrow y = 1 - x\), vậy với mỗi giá trị x chỉ có 1 giá trị y giá trị y, vậy x=y+1 là hàm số
b) \(y = {x^2}\)là 1 hàm số
c) \({y^2} = x \Rightarrow \)\(y = \sqrt x \)hoặc \(y = - \sqrt x \)(nếu \(x \ge 0\)), vậy 1 giá trị của x lại có 2 giá trị y, nên đây không phải là hàm số
d) \({x^2} - {y^2} = 0 \Leftrightarrow {x^2} = {y^2}\), y=x hoặc y=-x, vậy 1 giá trị của x lại có 2 giá trị y, nên đây không phải là hàm số
Nhận xét: Số trung bình cộng điểm thi Toán của lớp 10A cao hơn lớp 10B nên có thể nói lớp 10A có kết quả thi môn Toán tốt hơn lớp 10B.
link: doctailieu.com/dap-an-bai-5-trang-79-sgk-dai-so-lop-10