Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
a) Ta có: \(F=\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Min(F) = 1 khi x=2
b) \(D=\sqrt{2x^2-4x+10}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min\left(D\right)=2\sqrt{2}\Leftrightarrow x=1\)
c) \(G=\sqrt{2x^2-6x+5}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\sqrt{\frac{1}{2}}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(Min\left(G\right)=\frac{\sqrt{2}}{2}\Leftrightarrow x=\frac{3}{2}\)
\(A=\sqrt{\left(x-4\right)^2+4}-12\ge\sqrt{4}-12=-10\)
\(\Rightarrow A_{min}=-10\) khi \(x=4\)
\(B=2\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}\ge2\sqrt{\frac{11}{4}}=\sqrt{11}\)
\(B_{min}=\sqrt{11}\) khi \(x=-\frac{3}{2}\)
\(C=\frac{3}{1+\sqrt{9-\left(x-1\right)^2}}\ge\frac{3}{1+\sqrt{9}}=\frac{3}{4}\) (để chặt chẽ thì cần tìm ĐKXĐ cho căn thức trước, bạn tự tìm)
Bài 2:
\(A=\sqrt{7-2x^2}\le\sqrt{7}\)
\(A_{max}=\sqrt{7}\) khi \(x=0\)
\(B=\sqrt{7-\left(2x+1\right)^2}+5\le\sqrt{7}+5\) (cần ĐKXĐ)
\(B_{max}=\sqrt{7}+5\) khi \(x=-\frac{1}{2}\)
\(C=7+\sqrt{1-\left(2x-1\right)^2}\le7+\sqrt{1}=8\) (cần tìm ĐKXĐ)
\(C_{max}=8\) khi \(x=\frac{1}{2}\)
Nếu đề bài là 4x thì cách giải nè :
2x2 + 4x + 3 = 2.(x2 + 2x +1) + 1 = 2.(x+1)2 + 1 >= 1 ( >= là dấu lớn hơn hoặc bằng ) khi đó căn thứ nhất >= căn 1 =1
x2 + 2x + 3 = (x+1)2 + 2 >=2 khi đó căn thứ 2 >= căn 2
Suy ra y>= 1 + căn 2
Dấu = xảy ra khi x+1=0 khi x=-1
Mình làm tắt bước xét giá trị nha bạn thông cảm
a)x2-2x+3=(x2-2x+1)+2=(x-1)2+2>2
=>Min=2<=>(x-1)2=0<=>x=1
b)2x2-4x=(2x2-4x+2)-2=2(x-1)2-2>-2
=>Min = -2<=>(x-1)2=0<=>x=1
c)\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}=1\)
=>Min=1<=>(x+2)2=0<=>x=-2
Đưa về HĐT kết luận riêng ý C mình làm cho
c) TA có x^2 + 4x + 5 = x^2 + 4x + 4 + 1 = ( x+ 2 )^2 + 1
Vì(x+ 2)^2 >= 0 => ( x+ 2 )^2 + 1 >=1
\(\sqrt{x^2+4x+5}\ge\sqrt{1}=1\)
Vậy GTNN là 1 tại x + 2 = 0 => x = -2
\(y=\sqrt{x^2+2x+3}+\sqrt{2x^2+4x+3}\)
\(y=\sqrt{x^2+2x+3}+\sqrt{2\left(x^2+2x+\dfrac{3}{2}\right)}\)
\(y=\sqrt{x^2+2x+1+2}+\sqrt{2\left(x^2+2x+1+\dfrac{1}{2}\right)}\)
\(y=\sqrt{\left(x+1\right)^2+2}+2\sqrt{\left(x+1\right)^2+1}\ge\sqrt{2}+1\)
Dấu "=" xảy ra khi: \(x=-1\)
cai tren so 2 o ngoai can nha