Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\\ 2S=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ 2S+S=1-\dfrac{1}{2^{100}}\\ S=\dfrac{1-\dfrac{1}{2^{100}}}{3}\)
a. Ta Có : x+4=x+1+3
để x+4 chia hết cho x+1
Thì x+1+3 chia het cho x+1
Suy ra 3 chia hết cho x+1 (vì x+1chia hết cho x+1)
Suy ra x+1 thuộc ước của 3
Suy ra x+1 =1 hoặc x+1 =3
Với x+1=1 thì x=1-1 Với x+1=3
x= 0 thì x= 3-1
x=2
MINH BIET LAM DO NHUNG CAU LI LUAN CUA MINH CON THIEU CHO NAO DO
S=1+22+23+...+22020
2S= 22+23+24+...+22021
2S - S = S = (22- 22) + (23-23)+ (24- 24)+...+(22020-22020) + (22021-1)
= 22021 - 1
\(S=1+2^2+2^3+...+2^{2020}\)
\(=1+\left(2^2+2^3+...+2^{2020}\right)\). Đặt:
\(A=2^2+2^3+...+2^{2020}\Rightarrow2A=2^3+2^4+...+2^{2021}\)
Do 2A - A = A nên \(A=\left(2^3+2^4+...+2^{2021}\right)-\left(2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-2^2\Rightarrow S=1+\left(2^{2021}-2^2\right)=1+2^{2021}-4\)
Vậy: \(S=1+2^{2021}-4\)
câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)
suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6
3a^2+9a+6=3a^2+9a+6
câu b)
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3
S= (2+3+4+5+....+20)^3
S=(20-2):1+1)x(20+2):2)^3
S=(19x22:2)^3
S=(209)^3 ( cho mik nhe bn)